
R. Kuehl p. 1
R I T

Software Engineering

Software Architecture Anti-Patterns



R. Kuehl p. 2
R I T

Software Engineering

What are Anti-patterns?

 “An AntiPattern describes a commonly occurring 
solution to a problem that generates decidedly 
negative consequences.”

 Happens because an architect…

 Does not have sufficient knowledge or experience
solving a particular problem

 Applied a perfectly good design pattern in the wrong 
context



R. Kuehl p. 3
R I T

Software Engineering

Examples - 1

 Jumble
Horizontal and vertical design elements are intermixed 
(ball of mud). The result is unstable, and limits reusability. 
The layer pattern is violated.

 Stovepipe
External systems and/or internal subsystems are 
integrated in an ad hoc point to point manner using 
multiple integration strategies and mechanisms. It is 
characterized by a lack of coordination and planning, 
extensibility and support are difficult. 

 Cover Your Assets
Less-than-useful requirements are produced because 
important decisions are avoided and alternatives are 
elaborated. Obfuscates architecture design



R. Kuehl p. 4
R I T

Software Engineering

Examples - 2

 Vendor Lock-In - systems are highly dependent 
upon proprietary architectures. Architectural 
isolation layers can provide independence from 
vendor-specific solutions.

 Wolf Ticket
A product claims openness and conformance to 
unenforceable standards. Interfaces may vary 
significantly from the published standard. Marketing 
motivated (term comes from rock concert ticket 
scalping)

 Architecture by Implication
Lack of architecture planning and documentation 
due to architect over confidence or incompetence 
leads to implementation risks



R. Kuehl p. 5
R I T

Software Engineering

Examples - 3

 Design by Committee
Design by Committee creates overly complex architectures 
that lack coherence. Clarification of architectural roles and 
improved process facilitation can refactor bad meeting 
processes into highly productive events.

 Swiss Army Knife
An excessively complex component interface. The 
designer attempts to provide for all possible uses of the 
component. 

 Reinvent the Wheel
Pervasive lack of technology transfer between software 
projects leads to substantial reinvention. Design 
knowledge buried in legacy assets can be leveraged to 
reduce time-to-market, cost, and risk.

 The Grand Old Duke of York
Egalitarian software processes often ignore people’s 
talents to the detriment of the project. Programming skill 
does not equate to skill in defining abstractions. Distinguish 
between programmers and design modelers



R. Kuehl p. 6
R I T

Software Engineering

References

 AntiPatterns, Muller, University of Victoria, 
http://www.csc.uvic.ca/~hausi/480/lectures/antip
atterns.pdf

 https://sourcemaking.com/antipatterns/software-
architecture-antipatterns

http://www.csc.uvic.ca/~hausi/480/lectures/antipatterns.pdf
https://sourcemaking.com/antipatterns/software-architecture-antipatterns

