
J. Scott Hawker/R. Kuehl p. 1 Some material © Pearson Education
R I T

Software Engineering

Software Architecture Structures and Views

J. Scott Hawker/R. Kuehl p. 2 Some material © Pearson Education
R I T

Software Engineering

Topics

 Structures and views

 Modules

 Component and connector

 Allocation

 Examine some software architecture view
examples

J. Scott Hawker/R. Kuehl p. 3 Some material © Pearson Education
R I T

Software Engineering

Structures and Views

 Problem: difficult to comprehend and discuss all
system structures at once

 Structure: The set of elements itself, as they exist
in software or hardware

 View: a representation of a coherent set of
architectural elements and their relationships

“Documenting an architecture is a matter of

documenting the relevant views and then

adding documentation that applies to more

than one view.”

J. Scott Hawker/R. Kuehl p. 4 Some material © Pearson Education
R I T

Software Engineering

J. Scott Hawker/R. Kuehl p. 5 Some material © Pearson Education
R I T

Software Engineering

Possible Views (Viewpoints)

 Functional/logic view

 Module/code view

 Development/structural view

 Concurrency/process/runtime/thread view

 Physical/deployment/install view

 User action/feedback view

 Data view/data model

 Which of the views is the architecture? None of them

 Which views convey the architecture? All of them

J. Scott Hawker/R. Kuehl p. 6 Some material © Pearson Education
R I T

Software Engineering

4+1 View Model

[Philippe Kruchten, 1995]

 Logical view- e.g. object model using object
oriented design method

 Process view – concurrency and
synchronization aspects

 Physical view – mapping of components to
hardware, distribution aspect

 Development view – organization of the actual
software modules – libraries, packages,
subsystems

 + Use case view

J. Scott Hawker/R. Kuehl p. 7 Some material © Pearson Education
R I T

Software Engineering

System: Containers, Components, Classes

 Start with a context diagram for the system big
picture

 System is decomposed into containers

 Containers – high level technology choices,
“anything that can host code or data”

 Components – decompose each container into
logical modules and their relationships

 Classes – decompose components into classes
(UML) as needed

Software Architecture for Developers, Simon Brown, LeanPub.com

J. Scott Hawker/R. Kuehl p. 8 Some material © Pearson Education
R I T

Software Engineering

View Notations

 Informal – ad hoc conventions using graphical
editing tools and natural language descriptions

 Semiformal – prescribed graphical element
conventions and rules of construction; e.g.,
UML

 Formal – views are expressed in a notation that
has a precise (math based) semantics that
allows for formal analysis; architecture
description languages (ADL’s) – e.g., ABACUS

Provide a key!

J. Scott Hawker/R. Kuehl p. 9 Some material © Pearson Education
R I T

Software Engineering

J. Scott Hawker/R. Kuehl p. 10 Some material © Pearson Education
R I T

Software Engineering

Using UML to Represent Software Architecture

 UML is recommended notation but…

 Many notation variations to choose from

 No one set of prescribed choices

 Select notations that best fit what needs to be
communicated

 Keep it simple

 The following are recommendations

J. Scott Hawker/R. Kuehl p. 11 Some material © Pearson Education
R I T

Software Engineering

Start with Context Diagram for “Big Picture”

Printer

Cash

Dispenser

Bank

Account
ATM System

Card

Reader

Display/

Keypad

Lines show information flow

at the system boundaries

J. Scott Hawker/R. Kuehl p. 12 Some material © Pearson Education
R I T

Software Engineering

Three Broad Groups of Architectural Decisions

 Address three broad types of architectural
decisions

 Module structures

 What are the static functional code units?

 Component-and-connector structures

 What are the replaceable, distributable,
runtime computational elements that
encapsulate module behavior behind interfaces?

 Allocation structures

 What are runtime software artifacts and where are
they located in non-software environmental
structures?

J. Scott Hawker/R. Kuehl p. 13 Some material © Pearson Education
R I T

Software Engineering

Module Structure Views

 Elements - modules, implementation units of
software that provide a coherent set of
responsibilities

 Relations

 Object oriented

 Is part of, a part/whole relationship

 Depends on, a dependency relationship
between two modules

 Is a, a generalization/specialization relationship

 Layered – aggregation of modules into layers

UML: Package and class diagrams

J. Scott Hawker/R. Kuehl p. 14 Some material © Pearson Education
R I T

Software Engineering

Module View Example

Climate control system in vehicles

J. Scott Hawker/R. Kuehl p. 15 Some material © Pearson Education
R I T

Software Engineering

Usage of Module Views

 Static functional decomposition

 System information architecture

 Supports the definition of work assignments,
development process and schedules

 Blueprint for coding and testing

 Change-impact analysis

 Requirements traceability analysis

“It is unlikely that the documentation of any software

architecture can be complete without at least one module view.”

J. Scott Hawker/R. Kuehl p. 16 Some material © Pearson Education
R I T

Software Engineering

Component and Connector Structure Views

 Elements

 Components – encapsulated and replaceable system
elements that have runtime behavior

 Connectors - pathways of interaction between
components.

 Relations (in UML notation)

 Components have ports with associated connector
roles

 Ports have associated interfaces

 Relations represented as a graph of components and
connector attachments.

 E.g., client – server invoke-services role

 Interface delegation - component ports may be
associated with one or more “internal” ports

UML: Class, Package, and/or Component diagrams

J. Scott Hawker/R. Kuehl p. 17 Some material © Pearson Education
R I T

Software Engineering

Component and Connector UML Notation

Component

Port

Provided interface Required interface

J. Scott Hawker/R. Kuehl p. 18 Some material © Pearson Education
R I T

Software Engineering

Component-and-Connector View Example

(Can show simplified relationships)

J. Scott Hawker/R. Kuehl p. 19 Some material © Pearson Education
R I T

Software Engineering

C & C Views – Constraints and Usage

 Usage

 Major executing components

 Major shared data stores

 Runtime interaction; e.g., control and data flow,
parallelism

 Connector mechanisms – e.g., service
invocation, asynchronous messaging, event
subscription, …

 Constraints

 All attachments are only between components and
connectors

 Attachments must be between compatible ports
and roles

J. Scott Hawker/R. Kuehl p. 20 Some material © Pearson Education
R I T

Software Engineering

Allocation Views

 Elements

 Software element

 Some runtime packaging of logical modules
and components (e.g., processes)

 Environmental element - execution (hardware,
runtime operation) or development (file structure,
deployment, development organization)

 Properties that are provided to the software;
e.g., bandwidth

 Relations

 Allocated to - a software element is mapped
(allocated to) an environmental element

 Static or dynamic (e.g., resource allocation)

UML: Deployment diagrams

J. Scott Hawker/R. Kuehl p. 21 Some material © Pearson Education
R I T

Software Engineering

Allocation View Example

J. Scott Hawker/R. Kuehl p. 22 Some material © Pearson Education
R I T

Software Engineering

Usage of Allocation Views

 Specify structure and behavior of runtime
elements such as processes, objects, servers,
data stores

 Reasoning and decisions about …

 What hardware and software is needed

 Distributed development and allocation of work to
teams.

 Builds, integration testing, version control

 System installation

J. Scott Hawker/R. Kuehl p. 23 Some material © Pearson Education
R I T

Software Engineering

Augment with “Quality” Views

 More specific views may be needed for
specific stakeholders or to address specific
concerns

 The solution may be cross cutting across
multiple structural views

 By analogy – plumbing or electrical systems for
buildings

 A quality view extracts relevant pieces of
structural views and packages them together

 E.g., show just those components that have a role
in satisfying security requirements

J. Scott Hawker/R. Kuehl p. 24 Some material © Pearson Education
R I T

Software Engineering

Relating Structures to Each Other

 Each structure provides a different perspective
and design handle on a system

 Each is valid and useful on its own

 The structures are not independent, just the
opposite

 Elements of one will be related to elements of another

 Relationships should be consistent and rational

Element names: meaningful and consistent across views!!

J. Scott Hawker/R. Kuehl p. 25 Some material © Pearson Education
R I T

Software Engineering

Relating Structures to Each Other

 Example: a code module in a decomposition
structure may map to one, part of one, or
several run-time components in a component-
and-connector structure

 Sometimes, one structure dominates (usually
decomposition structure)

 For some systems, some structures may be
irrelevant or trivial, such as a single node,
single process application

J. Scott Hawker/R. Kuehl p. 26 Some material © Pearson Education
R I T

Software Engineering

Relating Structures to Each Other

J. Scott Hawker/R. Kuehl p. 27 Some material © Pearson Education
R I T

Software Engineering

Which Views? The Ones You Need!

 Different views support different goals and
uses

 The views you document depend on the
stakeholders and uses of the documentation.

 Each view has a cost and a benefit; the
benefits of maintaining a view should outweigh
its costs

 At a minimum, at least on module view and one
component and connector view

J. Scott Hawker/R. Kuehl p. 28 Some material © Pearson Education
R I T

Software Engineering

Supplemental Material

Examples of Views

J. Scott Hawker/R. Kuehl p. 29 Some material © Pearson Education
R I T

Software Engineering

Module View

Example
UML Module

Diagram

J. Scott Hawker/R. Kuehl p. 30 Some material © Pearson Education
R I T

Software Engineering

Module View Example

J. Scott Hawker/R. Kuehl p. 31 Some material © Pearson Education
R I T

Software Engineering

Module View

Example
UML Domain

Model Class

Diagram

J. Scott Hawker/R. Kuehl p. 32 Some material © Pearson Education
R I T

Software Engineering

Module View Example
UML Class Diagram

J. Scott Hawker/R. Kuehl p. 33 Some material © Pearson Education
R I T

Software Engineering

Component-and-Connector
UML Component Diagram

J. Scott Hawker/R. Kuehl p. 34 Some material © Pearson Education
R I T

Software Engineering

Component-and-Connector
Client Server View Example

J. Scott Hawker/R. Kuehl p. 35 Some material © Pearson Education
R I T

Software Engineering

Component-and-Connector
Another Example

J. Scott Hawker/R. Kuehl p. 36 Some material © Pearson Education
R I T

Software Engineering

Component-Connector
Embedded Example

J. Scott Hawker/R. Kuehl p. 37 Some material © Pearson Education
R I T

Software Engineering

Allocation View
UML Deployment Diagram Example

J. Scott Hawker/R. Kuehl p. 38 Some material © Pearson Education
R I T

Software Engineering

Allocation View
UML Implementation Diagram

