
J. Scott Hawker/R. Kuehl p. 1 Some material © Pearson Education
R I T

Software Engineering

Software Architecture Structures and Views

J. Scott Hawker/R. Kuehl p. 2 Some material © Pearson Education
R I T

Software Engineering

Topics

 Structures and views

 Modules

 Component and connector

 Allocation

 Examine some software architecture view
examples

J. Scott Hawker/R. Kuehl p. 3 Some material © Pearson Education
R I T

Software Engineering

Structures and Views

 Problem: difficult to comprehend and discuss all
system structures at once

 Structure: The set of elements itself, as they exist
in software or hardware

 View: a representation of a coherent set of
architectural elements and their relationships

“Documenting an architecture is a matter of

documenting the relevant views and then

adding documentation that applies to more

than one view.”

J. Scott Hawker/R. Kuehl p. 4 Some material © Pearson Education
R I T

Software Engineering

J. Scott Hawker/R. Kuehl p. 5 Some material © Pearson Education
R I T

Software Engineering

Possible Views (Viewpoints)

 Functional/logic view

 Module/code view

 Development/structural view

 Concurrency/process/runtime/thread view

 Physical/deployment/install view

 User action/feedback view

 Data view/data model

 Which of the views is the architecture? None of them

 Which views convey the architecture? All of them

J. Scott Hawker/R. Kuehl p. 6 Some material © Pearson Education
R I T

Software Engineering

4+1 View Model

[Philippe Kruchten, 1995]

 Logical view- e.g. object model using object
oriented design method

 Process view – concurrency and
synchronization aspects

 Physical view – mapping of components to
hardware, distribution aspect

 Development view – organization of the actual
software modules – libraries, packages,
subsystems

 + Use case view

J. Scott Hawker/R. Kuehl p. 7 Some material © Pearson Education
R I T

Software Engineering

System: Containers, Components, Classes

 Start with a context diagram for the system big
picture

 System is decomposed into containers

 Containers – high level technology choices,
“anything that can host code or data”

 Components – decompose each container into
logical modules and their relationships

 Classes – decompose components into classes
(UML) as needed

Software Architecture for Developers, Simon Brown, LeanPub.com

J. Scott Hawker/R. Kuehl p. 8 Some material © Pearson Education
R I T

Software Engineering

View Notations

 Informal – ad hoc conventions using graphical
editing tools and natural language descriptions

 Semiformal – prescribed graphical element
conventions and rules of construction; e.g.,
UML

 Formal – views are expressed in a notation that
has a precise (math based) semantics that
allows for formal analysis; architecture
description languages (ADL’s) – e.g., ABACUS

Provide a key!

J. Scott Hawker/R. Kuehl p. 9 Some material © Pearson Education
R I T

Software Engineering

J. Scott Hawker/R. Kuehl p. 10 Some material © Pearson Education
R I T

Software Engineering

Using UML to Represent Software Architecture

 UML is recommended notation but…

 Many notation variations to choose from

 No one set of prescribed choices

 Select notations that best fit what needs to be
communicated

 Keep it simple

 The following are recommendations

J. Scott Hawker/R. Kuehl p. 11 Some material © Pearson Education
R I T

Software Engineering

Start with Context Diagram for “Big Picture”

Printer

Cash

Dispenser

Bank

Account
ATM System

Card

Reader

Display/

Keypad

Lines show information flow

at the system boundaries

J. Scott Hawker/R. Kuehl p. 12 Some material © Pearson Education
R I T

Software Engineering

Three Broad Groups of Architectural Decisions

 Address three broad types of architectural
decisions

 Module structures

 What are the static functional code units?

 Component-and-connector structures

 What are the replaceable, distributable,
runtime computational elements that
encapsulate module behavior behind interfaces?

 Allocation structures

 What are runtime software artifacts and where are
they located in non-software environmental
structures?

J. Scott Hawker/R. Kuehl p. 13 Some material © Pearson Education
R I T

Software Engineering

Module Structure Views

 Elements - modules, implementation units of
software that provide a coherent set of
responsibilities

 Relations

 Object oriented

 Is part of, a part/whole relationship

 Depends on, a dependency relationship
between two modules

 Is a, a generalization/specialization relationship

 Layered – aggregation of modules into layers

UML: Package and class diagrams

J. Scott Hawker/R. Kuehl p. 14 Some material © Pearson Education
R I T

Software Engineering

Module View Example

Climate control system in vehicles

J. Scott Hawker/R. Kuehl p. 15 Some material © Pearson Education
R I T

Software Engineering

Usage of Module Views

 Static functional decomposition

 System information architecture

 Supports the definition of work assignments,
development process and schedules

 Blueprint for coding and testing

 Change-impact analysis

 Requirements traceability analysis

“It is unlikely that the documentation of any software

architecture can be complete without at least one module view.”

J. Scott Hawker/R. Kuehl p. 16 Some material © Pearson Education
R I T

Software Engineering

Component and Connector Structure Views

 Elements

 Components – encapsulated and replaceable system
elements that have runtime behavior

 Connectors - pathways of interaction between
components.

 Relations (in UML notation)

 Components have ports with associated connector
roles

 Ports have associated interfaces

 Relations represented as a graph of components and
connector attachments.

 E.g., client – server invoke-services role

 Interface delegation - component ports may be
associated with one or more “internal” ports

UML: Class, Package, and/or Component diagrams

J. Scott Hawker/R. Kuehl p. 17 Some material © Pearson Education
R I T

Software Engineering

Component and Connector UML Notation

Component

Port

Provided interface Required interface

J. Scott Hawker/R. Kuehl p. 18 Some material © Pearson Education
R I T

Software Engineering

Component-and-Connector View Example

(Can show simplified relationships)

J. Scott Hawker/R. Kuehl p. 19 Some material © Pearson Education
R I T

Software Engineering

C & C Views – Constraints and Usage

 Usage

 Major executing components

 Major shared data stores

 Runtime interaction; e.g., control and data flow,
parallelism

 Connector mechanisms – e.g., service
invocation, asynchronous messaging, event
subscription, …

 Constraints

 All attachments are only between components and
connectors

 Attachments must be between compatible ports
and roles

J. Scott Hawker/R. Kuehl p. 20 Some material © Pearson Education
R I T

Software Engineering

Allocation Views

 Elements

 Software element

 Some runtime packaging of logical modules
and components (e.g., processes)

 Environmental element - execution (hardware,
runtime operation) or development (file structure,
deployment, development organization)

 Properties that are provided to the software;
e.g., bandwidth

 Relations

 Allocated to - a software element is mapped
(allocated to) an environmental element

 Static or dynamic (e.g., resource allocation)

UML: Deployment diagrams

J. Scott Hawker/R. Kuehl p. 21 Some material © Pearson Education
R I T

Software Engineering

Allocation View Example

J. Scott Hawker/R. Kuehl p. 22 Some material © Pearson Education
R I T

Software Engineering

Usage of Allocation Views

 Specify structure and behavior of runtime
elements such as processes, objects, servers,
data stores

 Reasoning and decisions about …

 What hardware and software is needed

 Distributed development and allocation of work to
teams.

 Builds, integration testing, version control

 System installation

J. Scott Hawker/R. Kuehl p. 23 Some material © Pearson Education
R I T

Software Engineering

Augment with “Quality” Views

 More specific views may be needed for
specific stakeholders or to address specific
concerns

 The solution may be cross cutting across
multiple structural views

 By analogy – plumbing or electrical systems for
buildings

 A quality view extracts relevant pieces of
structural views and packages them together

 E.g., show just those components that have a role
in satisfying security requirements

J. Scott Hawker/R. Kuehl p. 24 Some material © Pearson Education
R I T

Software Engineering

Relating Structures to Each Other

 Each structure provides a different perspective
and design handle on a system

 Each is valid and useful on its own

 The structures are not independent, just the
opposite

 Elements of one will be related to elements of another

 Relationships should be consistent and rational

Element names: meaningful and consistent across views!!

J. Scott Hawker/R. Kuehl p. 25 Some material © Pearson Education
R I T

Software Engineering

Relating Structures to Each Other

 Example: a code module in a decomposition
structure may map to one, part of one, or
several run-time components in a component-
and-connector structure

 Sometimes, one structure dominates (usually
decomposition structure)

 For some systems, some structures may be
irrelevant or trivial, such as a single node,
single process application

J. Scott Hawker/R. Kuehl p. 26 Some material © Pearson Education
R I T

Software Engineering

Relating Structures to Each Other

J. Scott Hawker/R. Kuehl p. 27 Some material © Pearson Education
R I T

Software Engineering

Which Views? The Ones You Need!

 Different views support different goals and
uses

 The views you document depend on the
stakeholders and uses of the documentation.

 Each view has a cost and a benefit; the
benefits of maintaining a view should outweigh
its costs

 At a minimum, at least on module view and one
component and connector view

J. Scott Hawker/R. Kuehl p. 28 Some material © Pearson Education
R I T

Software Engineering

Supplemental Material

Examples of Views

J. Scott Hawker/R. Kuehl p. 29 Some material © Pearson Education
R I T

Software Engineering

Module View

Example
UML Module

Diagram

J. Scott Hawker/R. Kuehl p. 30 Some material © Pearson Education
R I T

Software Engineering

Module View Example

J. Scott Hawker/R. Kuehl p. 31 Some material © Pearson Education
R I T

Software Engineering

Module View

Example
UML Domain

Model Class

Diagram

J. Scott Hawker/R. Kuehl p. 32 Some material © Pearson Education
R I T

Software Engineering

Module View Example
UML Class Diagram

J. Scott Hawker/R. Kuehl p. 33 Some material © Pearson Education
R I T

Software Engineering

Component-and-Connector
UML Component Diagram

J. Scott Hawker/R. Kuehl p. 34 Some material © Pearson Education
R I T

Software Engineering

Component-and-Connector
Client Server View Example

J. Scott Hawker/R. Kuehl p. 35 Some material © Pearson Education
R I T

Software Engineering

Component-and-Connector
Another Example

J. Scott Hawker/R. Kuehl p. 36 Some material © Pearson Education
R I T

Software Engineering

Component-Connector
Embedded Example

J. Scott Hawker/R. Kuehl p. 37 Some material © Pearson Education
R I T

Software Engineering

Allocation View
UML Deployment Diagram Example

J. Scott Hawker/R. Kuehl p. 38 Some material © Pearson Education
R I T

Software Engineering

Allocation View
UML Implementation Diagram

