
S. Ludi/R. Kuehl p. 1
R I T

Software Engineering

R.I.T

Design Heuristics and Evaluation

Rapid Evaluation

S. Ludi/R. Kuehl p. 2
R I T

Software Engineering

R.I.T

 Another method for finding usability problems in a
UI design

 Validation during design - does the proposed
interface …

 Implement all variations of every user task correctly?

 Achieve all user requirements?

 A small set of evaluators examine the interface and
judge its compliance against recognized usability
principles (the "heuristics")

 Use Nielsen’s Heuristics

Heuristic Evaluation

S. Ludi/R. Kuehl p. 3
R I T

Software Engineering

R.I.T

 “Experience-based techniques for problem
solving, learning, and discovery” Wikipedia

 Useful when exhaustive exacting work is impractical

 Trial-and-error

 Self educating

 Examples include using experiential guidelines
including …

 a rule of thumb, an educated guess, an intuitive
judgment, or common sense

What is a Heuristic?

S. Ludi/R. Kuehl p. 4
R I T

Software Engineering

R.I.T

 Jakob Nielsen is a Danish usability consultant
http://www.nngroup.com/

 Developed the Discount Usability Engineering
(DUE) model

 Simplify usability design methods to encourage
wide spread adoption by the development community

 Three techniques:

 Scenarios – simple focused prototypes

 Simplified thinking aloud – have a small sample of
real users think out loud while they perform tasks

 Heuristic evaluation – evaluate designs early using
10 simple usability guidelines

 NOTE: these are quality evaluation measures, NOT
design principles

Who is Nielsen?

http://www.nngroup.com/

S. Ludi/R. Kuehl p. 5
R I T

Software Engineering

R.I.T

 Learnability

 Memorability

 Efficiency

 Minimize errors (understandability)

 Satisfaction

Nielsen’s Usability Goals

Fundamental measures of usability quality

S. Ludi/R. Kuehl p. 6
R I T

Software Engineering

R.I.T

1. Visibility of system status

 Always keep users informed about what is going on,
through appropriate feedback within reasonable time

2. Match between the system and the real world

 Speak the users' language, with words, phrases and
concepts familiar to the user, rather than system-
oriented terms

 Follow real-world conventions, making information
appear in a natural and logical order

Nielson’s Heuristics

10 Usability Rules of Thumb

S. Ludi/R. Kuehl p. 7
R I T

Software Engineering

R.I.T

3. User control and freedom

 Support undo and redo. Users often choose system
functions by mistake and will need a clearly marked
"emergency exit" to leave the unwanted state without
having to go through an extended dialogue.

4. Consistency and standards

 Follow platform conventions. Users should not have to
wonder whether different words, situations, or actions
mean the same thing.

Nielson’s Heuristics

S. Ludi/R. Kuehl p. 8
R I T

Software Engineering

R.I.T

5. Error prevention

 Design to prevent problems from occurring - better
than good error messages

 Either eliminate error-prone conditions or check for
them ….

 … and present users with a confirmation option
before they commit to the action

6. Help users recognize, diagnose, and recover
from errors

 Error messages should be expressed in plain
language (no codes), precisely indicate the problem,
and suggest a solution

Nielson’s Heuristics

S. Ludi/R. Kuehl p. 9
R I T

Software Engineering

R.I.T

7. Flexibility and efficiency of use

 Mechanisms to allow for efficient interaction for
inexperienced and experienced users

 Mechanisms can be hidden for novices

 Allow users to tailor frequent actions

8. Aesthetic and minimalist design

 Dialogues should not contain irrelevant or rarely
needed information

 Every extra unit of information in a dialogue
competes with the relevant units of information and
diminishes understanding

Nielson’s Heuristics

S. Ludi/R. Kuehl p. 10
R I T

Software Engineering

R.I.T

9. Recognition rather than recall

 Minimize the user's memory load by making
objects, actions, and options visible

 The user should not have to remember information
from one part of the dialogue to another

 Instructions for use of the system should be
visible or easily retrievable whenever appropriate

Nielson’s Heuristics

S. Ludi/R. Kuehl p. 11
R I T

Software Engineering

R.I.T

10. Help and documentation

 Even though it is better if the system can be used
without documentation, it may be necessary to
provide help and documentation

 Any such information should be

 easy to search,

 focused on the user's task,

 list concrete steps to be carried out, and not be
too large.

Nielson’s Heuristics

S. Ludi/R. Kuehl p. 12
R I T

Software Engineering

R.I.T

 Let’s solve an online puzzle

http://www.jigzone.com//

 Do a pair evaluation

 Step 1: Choose a puzzle and become familiar with it

 Step 2: Evaluate the usability by applying Nielson’s
10 heuristics

 Fill out a table – for each applicable heuristic,
describe the interface design problem

 Dropbox – “Web Site HE”

Heuristic Evaluation Practice

Task Action Heuristic Violated Defect Description

http://www.jigzone.com/
http://www.nationalgeographic.com/

S. Ludi/R. Kuehl p. 13
R I T

Software Engineering

R.I.T

 Each individual evaluator inspects the interface
alone and documents problems

 The evaluators use a set of typical usage
scenarios for a sample set of realistic tasks

 Task scenarios are evaluated against a checklist
of recognized usability principles (the
heuristics).

 The results of the evaluation are recorded either
as written reports from each evaluator OR …

 … the evaluators verbalize their comments to an
observer as they go through the interface

 The session for an individual evaluator lasts one
or two hours, but can last longer

Heuristic Evaluation: During

S. Ludi/R. Kuehl p. 14
R I T

Software Engineering

R.I.T

 Evaluators should go through the interface at least
twice.

 The first pass would be intended to get a feel for the
flow of the interaction and the general scope of the
system

 The second pass then allows the evaluator to focus
on specific interface elements while knowing how
they fit into the larger whole

 It is acceptable to perform heuristic evaluation of low
fidelity (paper) interfaces

Heuristic Evaluation: Evaluators

S. Ludi/R. Kuehl p. 15
R I T

Software Engineering

R.I.T

 The observer (or the "experimenter"):

 Records the evaluator's comments about the interface,
but does not interpret the evaluator's actions

 As necessary, answers evaluator questions and may
provide hints on using the interface

 The evaluators should not be given help until they are
clearly in trouble and have commented on the usability
problem in question

Heuristic Evaluation: Observer

S. Ludi/R. Kuehl p. 16
R I T

Software Engineering

R.I.T

 After individual evaluations, evaluators (with
observers) aggregate their findings to produce …

 A list of usability problems in the interface with
references to those usability principles that were
violated

 Each problem is listed separately, even if from
same element

 Sufficient detail

 Evaluators can’t just say they don’t like it

 The “not liking it” needs to have a reference to the
heuristics

Heuristic Evaluation: Output

S. Ludi/R. Kuehl p. 17
R I T

Software Engineering

R.I.T

 Provide some design advice AFTER the
evaluation

 The participants should include the evaluators, the
observers, and design representatives

 The session

 Discussions (brainstorming) of possible redesigns
to address the major usability problems and general
problematic aspects of the design

 Also discuss the positive aspects of the design,
since heuristic evaluation does not otherwise
address this

Heuristic Evaluation: Debriefing

S. Ludi/R. Kuehl p. 18
R I T

Software Engineering

R.I.T

 Each team will have two observers, two evaluators for
another team’s system

 Pre:

 Each team needs to have each HTA task(5) documented

 The checklist to be used is Nielson’s (that’s it)

 Have the system ready for evaluation for the next class

 During (in class)

 Pass 1: The evaluator will go through the system to be familiar
with it and note any overall problems using the checklist that the
observers write down

 Pass 2:Then go through each task and note any problems using
the checklist

 The observer will answer questions

 Use the “Heuristic Testing Worksheet” in myCourses to
document issues

 Evaluators work independently

In Class Evaluation

S. Ludi/R. Kuehl p. 19
R I T

Software Engineering

R.I.T

 During (continued)

 Following the evaluation, debrief evaluator to discuss
possible fixes and positive observations

 After

 Team merges individual evaluations to create one
problem list

 Assign a severity priority

 As a team brainstorm solutions and adjust the project
plan

 Submit an evaluation report to the “Deliverable 6:
Heuristic Evaluation Notes” dropbox

 The two original heuristic testing worksheets

 The consolidated problem list with severity ratings

 Summary of the teams problem analysis and plan
forward

In Class Evaluation

S. Ludi/R. Kuehl p. 20
R I T

Software Engineering

R.I.T

 Jakob Nielson’s Design Heuristics
http://www.useit.com/papers/heuristic/heuristic_li
st.html

 Heuristic How-to
http://www.useit.com/papers/heuristic/heuristic_e
valuation.html

References

http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_evaluation.html

