
Real Time Operating Systems

1

from Fundamentals of Real Time Systems 
Mukul Shirvaikar & Theodore Elbert

Chapter 4



2

Real Time Systems Design

• Various design approaches implemented by system 
designers to meet real-time requirements

• Three general approaches to task scheduling: 

– ad-hoc scheduling

– deterministic scheduling using a cyclic executive

– non-deterministic, priority-driven scheduling using a 
multitasking executive 

• Evolved over time with successively more 
sophisticated approaches culminating in a full-fledged 
real-time operating system



3

Basic Solutions

• Ad-hoc scheduling is the simplest form of task 
scheduling, if it can be called task scheduling at all

• For straightforward processing with no specific 
periodic requirements, it provides satisfactory results

– Tasks are functional program units

– Dependencies are limited to precedence relationships

– Not periodic since repetition is not at precise rate

• Program may be essentially written as an endless loop 
with each task executing to completion in some 
predetermined sequence



4

Polled-Loop Systems

• Simplest form of Real-time “kernel”.

• Used for fast reaction to single events

• Do not require interrupts.

• Poll devices attached to the system continuously

• Keeps checking for a service request event, which can 
be a flag or signal in the software

• Event flag is typically cleared upon servicing so that 
the system is ready for the next event or “burst”



5

Polled-Loop Systems

Capture
characters

Process
User 
Commands

Process
Recipe



6

Polled-Loop Systems

• Simple while loop that executes multiple ‘tasks’.

• Tasks must not block.

• Tasks must have a known maximum execution time.

loop 

{ /* do forever     */

if (packet_here) /* check flag     */

{

packet_here = 0;/* reset flag      */

process_data(); /* process data */

}

if (timer_event) /* check flag     */

{

readCCR(); /* resets timer event flag */

process_event();/* process event */

}

}



7

Polled-Loop Systems

• Dedicated to the status loop, thereby making it 
impossible to do other tasks or even enter a “power-
saving” or sleep mode

• Not possible to guarantee that the peripherals will be 
serviced in the correct order or priority level



8

Finite State Machines

• Allows the system to transition between different 
states

• System tasks divided into sub-tasks and then a state 
associated with each one

• Once a sub-task is completed, the program changes 
the state

• Relinquishes control to the main loop which then 
decides the next sub-task to perform based upon a 
switch statement associated with the designated state



9

Finite State Machines

• States: a set of condition for a machine that exists for 
a non-trivial amount of time.  The meaning of non-
trivial is project dependent.

• Events: a set of actions that occur effectively instantly 
in the context of the project

• FSMs can be used in conjunction with interrupts or 
polling to form fairly sophisticated systems



10

Finite State Machines Example

States Events

Stopped Start button pressed

Starting Start succeeded

Running Stop button pressed

What event(s) are missing from this example?



11

The Multitasking Executive (RTOS)

• Embedded systems have a singular purpose.

• To accomplish this purpose, they may require running 
multiple tasks simultaneously.

• Tasks must not block, they are called upon repeatedly, 
they must remember their state.

• Some tasks are more important than others.

• Tasks may need to communicate with each other.

• An RTOS provides the framework to make this all 
happen.



12

Process vs. Task vs. Thread

• In contemporary operating systems, 

– Application is a separately loadable program. 

– A task or process is a running application.
(Windows task manager lets you manage processes)

• In an embedded system

– Process is an executing program.  A process has its own 
dedicated memory space.

– Threads are semi-independent tasks that operate under a 
process.  Threads share the memory space of the process.  
Threads can share data structures and variables.  

– Task ≈ Thread



13

The Multitasking Executive (RTOS)

• Sophisticated approach to the task scheduling 
problem is a multitasking executive or RTOS

• An RTOS schedules tasks in real-time based on 
their current priority chosen based on a 
scheduling strategy or metric

• The primary function of a multitasking 
executive is to schedule the tasks for execution 
in a manner that ensures the meeting of 
system operational requirements



14

The Multitasking Executive (RTOS)



15

The Multitasking Executive (RTOS)

• Task (or tasks if there are multiple processors) 
with the highest priority will be scheduled for 
execution unless the execution of the task is 
blocked

• A task is said to be blocked if the current state 
of program execution requires that it not be 
allowed to execute. For example, the task may 
be waiting for some lower priority task to 
provide it with needed data 



16

The Multitasking Executive (RTOS)

• Tasks can be added or deleted or the priorities 
of tasks can be changed without the necessity 
to change the system or redesign it - great 
amount of flexibility

• Appropriate for systems with

– Synchronous requirements

– Non-deterministic task execution times (times may 
vary over successive executions)

– Large asynchronous components



17

The Multitasking Executive (RTOS)

• The core functional component is a software 
component called a multitasking executive

• In addition to task scheduling it provides other 
services 

– task synchronization (primitive operations, such as 
semaphores, and queues)

– inter-task communication (signals and mailboxes)

– memory management

– Modules: device drivers, file system support, 
networking, protocols



18

The Multitasking Executive (RTOS)

• Task synchronization involves suspension and 
resumption of a task in accordance with the 
status of other tasks – known as context 
switching

• The context is the minimal information about a 
task that must be saved before suspension of 
the task so that it may be resumed at a later 
instant (register contents, I/O, memory 
management, etc.)



19

The Multitasking Executive (RTOS)

• Stored in protected memory in a data structure 
called the Task Control Block (TCB) or Thread 
Definition Structure (TDS)

• Context switching takes time that is overhead 
from the viewpoint of the application program. 
The amount of time required for context 
switching is one of important benchmarks used 
to judge the efficiency of a multitasking 
executive



20

The Multitasking Executive (RTOS)

• Concurrent execution - only an impression 
provided to the user that multiple tasks are 
running at the same time, because a single 
processor can only implement one task at any 
instant of time

• Parallel execution - multi-core or multi-
processor configurations and can actually 
execute tasks in parallel (still concurrent on 
each individual processor)



21

The Multitasking Executive (RTOS)

• Concurrent execution - Multiple tasks can be 
“active” at any instant of time and execute 
sequentially using a simple time-slicing scheme 
(also known as round-robin scheduling)

• Alternatively, such context switching can also 
be based on preemption due to priorities or 
resources.



22

The Concurrently Executing Task

• RTOS must provide for the creation, deletion, 
preemption and monitoring of tasks or threads

• The term “thread” is increasingly used instead 
of the term “task” to describe a distinct 
sequence of operations, since the use of 
multicore processors has become 
commonplace over the last few years



23

The Concurrently Executing Task

• Storage space requirements for the context of a 
task must be specified and provision must be 
made for multiple instances of the same task

• Other properties such as the task identifier and 
the task priority must also be maintained

• It is convenient to maintain such information 
about a task or thread in a data structure or 
object - task control block, or TCB or Thread 
Definition Structure (TDS). 



24

The Concurrently Executing Task

TCB - Task Control Block

struct osTaskControlBlock {

string TASK_NAME;

uint32_t priorty;

char *register_save;

uint32_t STATE;

time_t ACTIVATION_TIME;

}

REGISTER SAVE area – the area where 
the processor register contents are 
stored upon task suspension

STATE – the state of the task typically 

running (currently has the necessary 
resources and is executing)

suspended (currently blocked from 
execution awaiting action)

ready, (not blocked from execution, 
but waiting for resources necessary 
for execution)

PRIORITY – the priority of the task 
which may remain fixed or change 
during the system operation based on 
static or dynamic priority assignment

TASK_NAME – the name of the task 
that acts as an identifier for starting 
the task, suspending the task, or 
performing some other operation 
affecting the task

ACTIVATION_TIME – the time instance 
in the future when the task will be 
activated



25

The Concurrently Executing Task

• A process state diagram as a partially defined 
finite state machine

Terminated

SuspendedReady

Executing

Dormant

Schedule
Task

Aborted

Resource
Missing

Resource
Released

Preempted

Task with
Highest Priority

No Longer
Needed

Delete
Task



26

Mutex

• Threads operating in the same memory space have 
access to the same data structures & resources.

• A mutex (mutual exclusion object) is an software 
object used to control access to shared resources.

• A mutex is created for each resource requiring 
exclusive access.

• A thread requests access to the shared resource 
before using it (it may block)

• The thread releases the mutex before moving on

• A mutex is non-recursive



27

The System Timer

• RTOS - one of the most important tasks is to 
maintain accurate time (not world time for 
which there are special chips)

• Rather it is a measure of elapsed time between 
events

• Special timer sub-system that can be set to 
interrupt the operating system at regular 
intervals (timer interrupt based on clock)



28

The System Timer

• Typically this value can range from 1ms to 
100ms (commonly 10ms)

• The clock tick interrupt can be viewed as the 
system’s heartbeat 

• Granularity – system need vs. overhead

• The “real-time clock” – supported in hardware 
by a peripheral - on or off chip



29

The System Timer

• Most of the modern ARM processor cores 

– have an additional component on them known as 
the “SysTick” timer. Does STM32L4 have one??

– Implemented as simple increment or decrement 
counters that produce a hardware interrupt or 
system exception that must be handled by the CPU

– RTOS treats this exception as high-priority and the 
“scheduler” part of the RTOS is invoked at this time

– It makes decisions about system level issues such as 
which task should run in the next time slice



30

Preemptive Scheduling

• Task “preemption” and is one of the powerful 
tools that allows the RTOS to meet deadlines 
imposed by scheduling constraints

• Preemption results in the suspension of the 
currently executing task in order to permit 
another task to execute (after context switching 
of course)



31

Preemptive Scheduling



32

Preemptive Scheduling

• Static and dynamic task scheduling algorithms 
do not have guaranteed closed form solutions 
under most normal operating conditions and 
can sometimes lead to unpredictable behavior

• As systems get larger with many 
interdependent parts, it is increasingly difficult 
to do so, leading to the increasingly prevalent 
use of dynamic scheduling with techniques 
based on preemption



33

Precedence Constraints

• One task must complete execution before one 
or more of the other tasks can begin execution

• Add a layer of complexity to the scheduling 
process or algorithms

– deterministic schedules - precedence constraints 
help to satisfy task synchronization requirements

– non-deterministic schedules - precedence 
constraints implemented with inter-task 
communication



34

Choosing a RTOS

• The choice of the RTOS is one of the most 
important decisions made by the system 
designers. It is very important to review RTOS 
features before arriving at a choice since it is 
very difficult to change it once it has been 
made. This is especially true for products and 
companies that must support their software 
through several generations of the product. 
Software can be difficult to port and test on a 
different RTOS in the future. 



35

Commercial RTOS

• FreeRTOS.org

• POSIX (IEEE Standard)

• AMX (KADAK)

• C Executive (JMI Software)

• RTX (CMX Systems)

• eCos (Red Hat)

• INTEGRITY (Green Hills 
Software)

• LynxOS (LynuxWorks)

• μC/OS-II (Micrium)

• Neutrino (QNX Software 
Systems)

• Nucleus (Mentor Graphics)

• RTOS-32 (OnTime Software)

• OS-9 (Microware)

• OSE (OSE Systems)

• pSOSystem (Wind River)

• QNX (QNX Software Systems)

• Quadros (RTXC)

• RTEMS (OAR)

• ThreadX (Express Logic)

• Linux/RT (TimeSys)

• VRTX (Mentor Graphics)

• VxWorks (Wind River) 

Variety of flavors and pricing options



36

CMSIS Model (RTX)

CMSIS = Cortex Microcontroller Software Interface Standard

http://www.keil.com/pack/doc/CMSIS/General/html/index.html

