
 REAL TIME SYSTEMS SHIRVAIKAR

Task Scheduling Algorithms

1

 REAL TIME SYSTEMS SHIRVAIKAR

2

Types of Tasks
• Real-time systems software is typically designed using

distinct deliverables known as tasks or threads

• Fabrication of a schedule to determine whether the
system can meet the deadline requirements

• This estimation can be very difficult, making it
important to ensure reserve system capacity and
further to prevent critical system failure

• Types of tasks:

 - periodic – repetitive with hard deadlines

 - aperiodic – asynchronous with soft deadlines

 - sporadic – asynchronous with hard deadlines

 REAL TIME SYSTEMS SHIRVAIKAR

3

Types of Task Scheduling
• The array of categories of scheduling problems is

rather broad:

 - aperiodic or periodic

 - preemptive or non-preemptive

 - precedence constraints or no constraints

 - synchronization among tasks or no synchronization

 - static or dynamic scheduling

 - deterministic or non- deterministic scheduling

• Many (most?) task scheduling problems are NP-hard

• lntuitive heuristic algorithms sometimes lead to
unexpected and seeming paradoxical results

 REAL TIME SYSTEMS SHIRVAIKAR

4

Aperiodic Task Scheduling
• Establish analysis techniques extended later to the

more practical problem of scheduling periodic tasks

• The real time system considered here is assumed to
have a fixed number of tasks

• Execute each task a single time - cost function is the
overall execution time of the entire task set

 Minimize the time T required to execute N tasks

 on M processors

or

 Determine if the set of N tasks on M processors

 can be completed before a deadline D

 REAL TIME SYSTEMS SHIRVAIKAR

5

Aperiodic - Non-Preemptive Scheduling With
No Precedence Constraints

This "simple" scheduling problem Is

• NP-hard for M = 2,but with pseudo-polynomial time solution

• NP-hard for M > 2.

(If there are N tasks to be scheduled, the number of orderings-and
thus the number of possible schedules is N! If N = 20,and if one
candidate schedule could be checked In one microsecond, It would
take 70,000 years to check all 201 schedules!)

An heuristic algorithm for solution of this problem Is the Largest
Processing Time algorithm:

Whenever a processor is available, assign to it the available task
with the largest execution time.

 REAL TIME SYSTEMS SHIRVAIKAR

6

Aperiodic - Non-Preemptive Scheduling With
No Precedence Constraints

The problem statement includes:

 • M, the number of processors

 • N, the number of tasks

 • 𝒆𝒏, the execution time for each task.
Example: 𝑀 = 3 𝑒1 = 13, 𝑒2 = 8, 𝑒3 = 7 , 𝑒4 = 6, 𝑒5 = 4

 𝑁 = 7 𝑒6 = 2 𝑒7 = 2

In this case an optimal schedule is produced!

 REAL TIME SYSTEMS SHIRVAIKAR

7

Aperiodic - Non-Preemptive Scheduling With
No Precedence Constraints

A second example of Largest Processing Time algorithm:

 𝑀 = 3 𝑒1 = 16, 𝑒2 = 13, 𝑒3 = 12 , 𝑒4 = 8, 𝑒5 = 6

 𝑁 = 8 𝑒6 = 6 , 𝑒7 = 5, 𝑒8 = 2

Here, T=24, but this is not optimum.

 REAL TIME SYSTEMS SHIRVAIKAR

8

Aperiodic - Non-Preemptive Scheduling With
No Precedence Constraints

Second example with reordered tasks:

 𝑀 = 3 𝑒1 = 16, 𝑒2 = 13, 𝑒3 = 12 , 𝑒4 = 8, 𝑒5 = 6

 𝑁 = 8 𝑒6 = 5 , 𝑒7 = 5, 𝑒8 = 2

min T=23, this is optimum.

The problem with heuristic algorithms is that they are unpredictable

 REAL TIME SYSTEMS SHIRVAIKAR

9

Aperiodic - Non-Preemptive Scheduling With
No Precedence Constraints

The Largest Processing Time algorithm has a performance bound of

𝑇

𝑚𝑖𝑛𝑇
≤
4

3
−
1

3𝑀

In this case 𝑴 = 𝟑, this yields

𝑇

𝑚𝑖𝑛𝑇
≤
11

9

And the example problems , of course, meet this bound. The worst
case occurs for large M

𝑇

𝑚𝑖𝑛𝑇
≤
4

3

 REAL TIME SYSTEMS SHIRVAIKAR

10

Aperiodic - Non-Preemptive With Precedence
Constraints

• Precedence constraints occur when one task or subtask must
complete before another can begin execution.

• The problem statement then includes

• M, the number of processors

• N, the number of tasks

• 𝒆𝒏, the execution time for each task

• precedence constraint information for each task or subtask.

• This problem Is NP-hard In the strong sense for M > 2

 REAL TIME SYSTEMS SHIRVAIKAR

11

Aperiodic - Non-Preemptive With Precedence
Constraints

• Priority List Scheduling Algorithm:
– There is an a priori priority list 𝝉𝟏, 𝝉𝟐, ⋯ , 𝝉𝑵 This list is not required to

be consistent with the precedence constraints

– Precedence constraints are specified in the form 𝝉𝒊 → 𝝉𝒋 (task 𝝉𝒊 must

complete before task 𝝉𝒋 can start)

– At any time t that a processor is available, the scheduler scans the
priority and selects the highest priority task for which precedence
constraints have been satisfied and assigns the available processor to that
task

– If two or more processors compete for a task, the tie is broken(arbitrarily)
by assigning the task to the lowest indexed processor

• If no task is available for a vacant processor, it idles

 REAL TIME SYSTEMS SHIRVAIKAR

12

Aperiodic - Non-Preemptive With Precedence
Constraints

Priority List Scheduling example:

 𝑀 = 2 𝑒1 = 8, 𝑒2 = 2, 𝑒3 = 3 , 𝑒4 = 3, 𝑒5 = 7

 𝑁 = 10 𝑒6 = 7 , 𝑒7 = 18, 𝑒8 = 2 , 𝑒9 = 8, 𝑒10 = 8

min T=23, this is optimum.

Priority List = 𝝉𝟏, 𝝉𝟐, 𝝉𝟑, 𝝉𝟒, 𝝉𝟓, 𝝉𝟔, 𝝉𝟕, 𝝉𝟖, 𝝉𝟗, 𝝉𝟏𝟎

 REAL TIME SYSTEMS SHIRVAIKAR

13

Aperiodic - Non-Preemptive With Precedence
Constraints

The Priority List Scheduling is an heuristic algorithm. It is subject to
anomalous behavior.

This schedule is obviously optimum, with T = 33

Change Priority List = 𝝉𝟏, 𝝉𝟐, 𝝉𝟑, 𝝉𝟖, 𝝉𝟒, 𝝉𝟓, 𝝉𝟔, 𝝉𝟕, 𝝉𝟗, 𝝉𝟏𝟎

T = 35, suboptimal

 REAL TIME SYSTEMS SHIRVAIKAR

14

Aperiodic - Non-Preemptive With Precedence
Constraints

• Decreasing execution times of tasks or increasing the number of
processors is NOT guaranteed to produce a more optimal
schedule using the Priority List Scheduling Algorithm

• Two characteristics of the Priority List Scheduling algorithm are
responsible for such anomalous behavior:
– No processor Idle time can be inserted to aid in scheduling

– No preemption is allowed

 REAL TIME SYSTEMS SHIRVAIKAR

15

Aperiodic - Non-Preemptive With Precedence
Constraints

• There is a bound on these kinds of anomalous effects when
Priority List Scheduling is used:
– If a schedule is developed for a task system on M processors with a given

set of execution times, precedence constraints, and task priorities, and
producing schedule time T ; and a second schedule is developed on M'
processors with a set of reduced execution times, a weaker set of
precedence constraints, and a different priority list, and producing
schedule time T', then

𝑇′

𝑇
≤ 1 +

(𝑀 − 1)

𝑀′

– This is a strange bound, in essence limiting the damage that can be done
by lessening the systems requirements.

– When M = M', the bound is
𝑇′

𝑇
≤ 2 −

1

𝑀

 REAL TIME SYSTEMS SHIRVAIKAR

16

Aperiodic - Non-Preemptive With Precedence
Constraints

• One possible ordering of the priority list is in decreasing order of
task execution times. (recall the Largest Processing Time
algorithm)

• This process is termed Decreasing Priority List Scheduling.
– When precedence constraints are present, this algorithm can create the

worst possible schedule bounded by the factor

2 -
1

𝑀

(precedence constraints can prohibit tasks from executing in the order specified by the
priority list)

– When there are no precedence constraints, this algorithm exhibits a
performance bound of

4

3
−
1

3𝑀
 which is substantially better than 2 -

1

𝑀

• This bound implies that the schedule time produced by Decreasing Priority List
scheduling will never exceed the optimum value by more than a factor of 1/3

 REAL TIME SYSTEMS SHIRVAIKAR

17

Aperiodic - Preemptive With No Precedence
Constraints

• When there are no precedence constraints (or synchronization)
this problem is solvable in polynomial time - that is, it is a
tractable problem

• An algorithm for producing an optimum schedule:
– Given the task system 𝝉𝟏, 𝝉𝟐, ⋯ , 𝝉𝑵 in priority order of decreasing

execution times

– Compute the minimum schedule length T from the expression

𝑇 = 𝑚𝑎𝑥 𝑚𝑎𝑥 𝑒𝑛 ,
1

𝑀
 𝑒𝑛

𝑁

𝑛=1

– Starting with the first processor, assign tasks by the priority order. If the
duration of the task exceeds T, assign the remaining time to the next
processor.

– Continue until all tasks have been assigned

 REAL TIME SYSTEMS SHIRVAIKAR

18

Aperiodic - Preemptive With No Precedence
Constraints

An example: Case 1: 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 5

 𝑀 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 = 3
𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 − 𝑛𝑜𝑛𝑒

 𝑒1 = 12, 𝑒2 = 9, 𝑒3 = 8 , 𝑒4 = 7, 𝑒5 = 6

Calculate T = max {12,14} = 14

Processor utilization will be always 100% - if 𝑚𝑎𝑥 𝑒𝑛 <
1

𝑀
 𝑒𝑛
𝑁
𝑛=1

 REAL TIME SYSTEMS SHIRVAIKAR

19

Aperiodic - Preemptive With No Precedence
Constraints

Example, Case 2: Increase e1 to 18

Calculate T =max { 18,16} = 18

Processor utilization = 89%

 REAL TIME SYSTEMS SHIRVAIKAR

20

Aperiodic – Processor Sharing

• A conceptual view - a processor, rather than being considered a
discrete unit, is treated as though it comprises a unit of
processing capability to be divided into arbitrary fractions

• Processor sharing is a useful concept when dealing with
precedence constraints. A conceptual processor sharing
schedule can be converted to a realizable preemptive schedule

• Simple Example

M = number of processors = 2

N = number of tasks = 5

 REAL TIME SYSTEMS SHIRVAIKAR

21

Aperiodic – Processor Sharing

• Without processor sharing, the optimum schedule is:

 T=8, processor utilization = 5/8

 REAL TIME SYSTEMS SHIRVAIKAR

22

Aperiodic – Processor Sharing

• With processor sharing, the optimum schedule is:

 T=7, processor utilization = 5/7

The translation is not unique, since the assignments to processors
can be made in several ways as long as a single task does not
execute on two processors simultaneously

 REAL TIME SYSTEMS SHIRVAIKAR

23

Aperiodic – Processor Sharing
• The processor sharing schedule can be converted to a

preemptive schedule:

It is obvious that the process of preemption is needed to realize a
processor sharing schedule.

 REAL TIME SYSTEMS SHIRVAIKAR

24

Aperiodic - Preemptive With Precedence
Constraints

• This problem has a polynomial time solution if all task execution
times are equal and

– M ≤ 2, or

– the precedence graph is a tree (each task has at most one
immediate successor)

• In these two special cases, a technique known as Critical Path
Scheduling produces an optimal result.

• In any other case the problem is NP-hard, in which case the
Critical Path Scheduling technique is an heuristic.

 REAL TIME SYSTEMS SHIRVAIKAR

25

Aperiodic - Preemptive With Precedence
Constraints

Critical Path Scheduling Algorithm:
– Assign tasks to processors according to their relative urgency, starting at

the highest level in the precedence graph. If there is a tie among a
number of tasks 𝐴 for the last 𝐵 processors (𝐵 < 𝐴), then assign the 𝐴
tasks to the 𝐵 processors using processor sharing, i.e. assign the 𝐵/𝐴 of a
processor to each task.

– Re-assign the tasks to processors as described above, when either

• a task is completed, or

• a time is reached at which one of the tasks is executing at a rate
higher than that at which a task of higher relative urgency is
executing,

– The algorithm ensures that task reassignment occurs continuously in a
manner that ensures the most critical tasks will always be executing.

 REAL TIME SYSTEMS SHIRVAIKAR

26

Aperiodic - Preemptive With Precedence
Constraints

Relative urgency

For a task relative urgency is defined as the maximum of the sums of the
execution times along the various processing chains headed by the task in
the yet unexecuted part of the precedence graph.

Relative urgency for each task changes as the schedule is executed.

Relative urgency for each task can be computed at every instant in the schedule.
Practically, it can be computed periodically.

If the schedule is computed prior to run-time this does not constitute an
overhead.

 REAL TIME SYSTEMS SHIRVAIKAR

27

Aperiodic - Preemptive With Precedence
Constraints

Critical Path Scheduling Algorithm Example with M = 2:

 REAL TIME SYSTEMS SHIRVAIKAR

28

Aperiodic - Preemptive With Precedence
Constraints

Critical Path Scheduling Algorithm

Example with M = 2:

Conversion to a

Realizable Schedule

 REAL TIME SYSTEMS SHIRVAIKAR

29

Aperiodic - Preemptive With Precedence
Constraints

Critical Path Scheduling Algorithm Example with M = 3:

Tree-like precedence graph

T = 25.66

Processor utilization = 97%

 REAL TIME SYSTEMS SHIRVAIKAR

30

Aperiodic - Preemptive With Precedence Constraints

Critical Path Scheduling

Algorithm

Example with M = 3:

Conversion to a

Realizable Schedule

 REAL TIME SYSTEMS SHIRVAIKAR

31

Aperiodic Task Scheduling Summary
We have covered the following aperiodic task scheduling algorithms:

– Largest Processing Time Algorithm (no precedence constraints,
no preemption)

– Priority List Scheduling Algorithm (with precedence constraints,
no preemption)

– Decreasing Priority List Scheduling Algorithm (with precedence
constraints, no preemption, LPT rule for priority)

– Optimal Preemptive Scheduling Algorithm (no precedence
constraints, with preemption, without processor sharing)

– Processor Sharing Algorithm (with precedence constraints, with
preemption, with processor sharing)

– Critical Path Scheduling (with precedence constraints, with
preemption, with processor sharing)

 REAL TIME SYSTEMS SHIRVAIKAR

32

Aperiodic Task Scheduling Summary
• The assumptions and characteristics were:

– Tasks were aperiodic

– Tasks have deterministic execution times

– In most cases, the scheduling problem is intractable

– Heuristics play an important part

– Scheduling is static

– Release times and deadlines have not been considered

– The single processor case is usually trivial

When tasks are periodic, the scheduling problem becomes much
more complex.

(For example, the single processor case can become very complex)

 REAL TIME SYSTEMS SHIRVAIKAR

33

Periodic Task Scheduling
• Real-time systems typically respond to a number of external or

internal stimuli that are frequently periodic

• Periodic task scheduling model becomes an important issue

• Sets of periodic tasks in the presence of asynchronous
requirements

• Formalized as system parameters
– Task Periods: Periodic tasks have periods which are defined as the time

interval after which it must be repeated. Task periods are determined by the
system requirements and may vary based upon the task specifics.

– Precedence and/or synchronization constraints: Tasks do not typically
execute independently of one another, and one task may generate data used
by another task, or wait for it to complete.

 REAL TIME SYSTEMS SHIRVAIKAR

34

Periodic Task Scheduling

– Task Deadlines: The time by which task execution must be completed is
termed a deadline. Usually a periodic task must be completed by the time it
is again scheduled for execution (deadline= period), but a task may
sometimes have a deadline shorter than the period.

– Task execution times: The amount of time a task requires to complete is the
execution time and knowledge of these are required in order to develop a
schedule.

– The execution time of a task may vary from one execution to the next. This is
known as jitter and is due to differing execution paths taken through the
code. Jitter can constitute a major problem in periodic task schedules,
notably those implemented by deterministic, timer driven, cyclic executive
software.

 REAL TIME SYSTEMS SHIRVAIKAR

35

Task Model

– Task Number: The n-th task is referenced as 𝝉𝒏.

– Release Time: The release time of the n-th task is labeled 𝒓𝒏.
The release time is the time at which a task is scheduled to
execute. It may begin execution time any time after its release
time, but it may not begin execution before its release time.

 REAL TIME SYSTEMS SHIRVAIKAR

36

Task Model

– Period: The period of the n-th task in 𝒑𝒏 and it is the time
interval between successive release times of the task.

– Deadline: The deadline of the n-th task is designated as 𝒅𝒏. The
deadline is a time period following the release time of a task
within which the task must execute to completion.

 REAL TIME SYSTEMS SHIRVAIKAR

37

Task Model

– Execution Time: The execution time of the n-th task is 𝒆𝒏. This is
the time during which the task is actually executing.

– The above task model does not require the actual
execution of the task to be periodic, but rather that it
is the release times that occur in a periodic manner.

 REAL TIME SYSTEMS SHIRVAIKAR

38

Preemptive Task Model

– This kind of task execution may occur as a result of the development of a
cyclic executive schedule in which the task is broken into subtasks in order to
fit it into the schedule.

– Alternatively, it may occur dynamically as a RTOS preempts and resumes the
task during execution. In either case, the task cannot begin execution prior
to its release time, and it must complete prior to its deadline.

 REAL TIME SYSTEMS SHIRVAIKAR

39

Periodic Task Scheduling
These choices affect the scheduling process.

– Static or Dynamic Scheduling: Static schedules do not change during real-
time operation. They are generally implemented using a cyclic executive
design driven by an interrupt timer. On the other hand, dynamic schedules
may change during system operation and are implemented using a
multitasking executive (RTOS) and priority-driven scheduling.

– Preemption: Tasks may or may not be allowed to be preempted. For designs
based on cyclic executives, preemption means that the tasks can be
arbitrarily divided into subtasks to achieve synchronization, or in order to
"fit" them into the schedule. For priority-driven systems, preemption implies
that the real-time operating system is free to arbitrarily suspend an
executing subtask in order for a higher priority subtask to execute.

– Asynchronous processing: Most systems will have requirements represented
by aperiodic tasks. The arrival of aperiodic tasks is usually signaled and
handled by an interrupt, but normal interrupt processing may not always be
sufficient and special server techniques must be applied.

 REAL TIME SYSTEMS SHIRVAIKAR

40

Periodic Task Scheduling
• The primary design question is whether or not a given task system

with a specified set of task priorities can be scheduled in a manner
that ensures all tasks meet their deadlines.

• The general scheduling problem remains very difficult.
Consequently, heuristic methods are often used.

• An effective heuristic design method for generating cyclic
schedules is to assign task priorities according to some algorithm,
and then use these priorities to generate the schedule.

 REAL TIME SYSTEMS SHIRVAIKAR

41

Periodic Task Scheduling
• One method of performing the schedulability analysis of a

dynamic, priority driven, task scheduling process is to build the
schedule that would result if all tasks executed for precisely the
execution time specified for the task.

• Applies both to cyclic executive schedule design and to the
schedulability analysis of dynamic, priority-driven systems

• The arguments presented above imply that it does not matter
whether the goal is to analyze the schedulability of dynamically
scheduled, priority-driven systems using static task priorities, or to
design a static cyclic schedule using an algorithm that assigns tasks
according to a set of static priorities. The process is the same. A
similar statement holds for the case of dynamic task priorities.

 REAL TIME SYSTEMS SHIRVAIKAR

42

Static Task Scheduling
• Static task scheduling refers to the situation in which a cyclic

schedule is predetermined and the scheduler, in this case a cyclic
executive, executes the tasks according to this schedule.
– Static task scheduling with static task priorities refers to the situation in

which a predetermined schedule is developed using an algorithm that
assigns priorities to the tasks and then assigns tasks according to these
priorities. The priorities are static, in that their values do not vary during the
development of the schedule.

– Static task scheduling with dynamic task priorities refers to the situation in
which a predetermined schedule is developed using an algorithm that
assigns priorities to the tasks and then schedules tasks according to these
priorities. The priorities are dynamic, in that their values vary during the
development of the schedule in accordance with the algorithm used for their
determination.

 REAL TIME SYSTEMS SHIRVAIKAR

43

Dynamic Task Scheduling
• Dynamic task scheduling refers to the situation in which tasks are

scheduled dynamically by a multitasking executive as the program
executes.
– Dynamic task scheduling with static task priorities refers to the situation in

which the scheduler of a multitasking executive dynamically schedules tasks
in accordance with a set of static task priorities. Static priorities, by
definition, are preset and remain fixed throughout the execution of the
program.

– Dynamic task scheduling with dynamic task priorities refers to the situation
in which the scheduler of a multitasking executive dynamically schedules
tasks in accordance with a set of dynamic task priorities. Dynamic priorities,
by definition, can be modified as the program executes. The manner in
which these modifications take place is defined by the particular priority
assignment algorithm.

 REAL TIME SYSTEMS SHIRVAIKAR

44

Schedulability Analysis
• The term schedulability analysis refers to those techniques used to

determine if a given task system can be scheduled on one or more
processors.

– A task system is termed synchronous if the initial release times of all tasks

are identical. Without loss of generality, this common release time can be
taken to be zero. A task system that is not synchronous is said to be
asynchronous. The complexity of a scheduling problem varies considerably
depending on whether the task system is synchronous or asynchronous.

– A schedule is said to be valid for a specific task system if the schedule
provides for meeting the deadlines for all task requests. The term all task
requests includes the infinity of requests that exist for a periodic task, and
the question that is immediately raised concerns the problem of
guaranteeing deadlines for an infinite time.

 REAL TIME SYSTEMS SHIRVAIKAR

45

Schedulability Analysis

– A task system is said to be feasible on 𝑀 identical processors if there is a
valid schedule for the task system on 𝑀 identical processors.

– A task system is said to be schedulable on 𝑀 identical processors if there is a
valid schedule on 𝑀 identical processors produced by a static task priority
assignment. The priority assignment may be used by a multitasking
executive to dynamically schedule the tasks, or it may be used as a
scheduling algorithm in developing a static task schedule.

– A scheduling algorithm is said to be optimal if it always produces a valid
schedule for every task system that is feasible. This use of the term optimal
deserves particular attention. It implies that, if a task system is feasible, an
optimal algorithm will produce a valid - but not necessarily uniquely so task
schedule.

 REAL TIME SYSTEMS SHIRVAIKAR

46

Schedulability Analysis
• Processor utilization 𝑼, generalized to the 𝑀 processor

case, produces the following inequality as a necessary but
not sufficient condition for a task system to be feasible on
𝑀 identical processors

𝑈 =
𝑒𝑛
𝑝𝑛

𝑁

𝑛=1

≤ 𝑀

 (EQ 5.3.2)

 REAL TIME SYSTEMS SHIRVAIKAR

47

Schedulability Analysis
• Deadline utilization 𝑫 leads to the following

inequality as a sufficient but not necessary
condition for a task system to be feasible on 𝑀
identical processors

𝐷 =
𝑒𝑛
𝑑𝑛

𝑁

𝑛=1

≤ 𝑀

 (EQ 5.3.3)

 REAL TIME SYSTEMS SHIRVAIKAR

48

Schedulability Analysis
• For synchronous task systems in which all task deadlines

are equal to the corresponding periods, i.e.

 𝑑
𝑛
= 𝑝
𝑛

 for all 𝜏
𝑛

the inequality of the first equation above is both
necessary and sufficient.

YES/NO question “is the task system feasible?”

 REAL TIME SYSTEMS SHIRVAIKAR

49

Schedulability Analysis
• We need to determine whether a schedule produced by a

particular algorithm for static priority assignment is valid

– The response time of a task is the time interval between the
release time of the task and the completion time of the task.
The response time is different from the execution time of the
task. While the execution time is the total of the actual time the
task spends executing, the response time is comprised of the
actual execution time plus any suspension time.

– A critical instant of a task is a time at which the task is released
and has the largest response time of all task releases.

 REAL TIME SYSTEMS SHIRVAIKAR

50

Schedulability Analysis
• The “critical instant” concept necessarily defines the

extreme condition under which a task will meet its
deadline under the worst case scenario.

• It is easy to visualize that the task deadline will be met for
all release times of the task if and only if the deadline is
met when the release time occurs at a critical instant.

• Under static task priorities, a critical instant will occur for
a particular task if it is released simultaneously with all
higher priority tasks in the system. Furthermore, if the
task system is synchronous, the initial releases of all the
tasks occur at 𝑡 = 0.

 REAL TIME SYSTEMS SHIRVAIKAR

51

Schedulability Analysis
• The following important result can be stated:

For scheduling a synchronous task system on a single processor,
there is a pseudo-polynomial time algorithm for deciding if the
schedule produced by a given static priority assignment is valid.
The algorithm is the construction of the schedule from a critical
instant through the end of the longest period.

• Instead of the graphical construction of the schedule it is
sometimes more convenient to have analytical
techniques to investigate task system schedulability on a
single processor.

 REAL TIME SYSTEMS SHIRVAIKAR

52

Schedulability Analysis
• Analytical methods such as utilization bounds are

sometimes more convenient to determine schedulability
of a task system than creating a graphic schedule.

– The execution time of the task itself is the actual time
the task spends executing its code.

– The preemption time is the time the task is suspended
because of preemption by higher priority tasks.

– The blocking time is the time the task is blocked by
lower priority tasks.

 REAL TIME SYSTEMS SHIRVAIKAR

53

Schedulability Analysis
• Analytical methods such as utilization bounds are

sometimes more convenient to determine schedulability
of a task system than creating a graphic schedule.

– The execution time of the task itself is the actual time
the task spends executing its code.

– The preemption time is the time the task is suspended
because of preemption by higher priority tasks.

– The blocking time is the time the task is blocked by
lower priority tasks.

 REAL TIME SYSTEMS SHIRVAIKAR

54

Schedulability Analysis
• The concept of processor utilization that hitherto was

based solely on task execution time has to be extended
to include some additional effects:

– Preemption by tasks with priorities greater than or equal to that
of task 𝜏𝑛, but with periods greater than or equal to the
deadline of task 𝜏𝑛. The set of tasks with priorities higher than
that of task 𝜏𝑛 is designated as 𝑆𝑛. The subset of 𝑆𝑛 containing
those tasks with periods greater than or equal to the deadline
of task 𝜏𝑛 is designated as 𝑆𝑛𝑔 with the number of tasks in the

subset being 𝑁𝑛𝑔. Tasks in subset 𝑆𝑛𝑔can preempt task 𝜏𝑛 only

once before its deadline.

 REAL TIME SYSTEMS SHIRVAIKAR

55

Schedulability Analysis
– Preemption by tasks with priorities greater than or equal to that

of task 𝜏𝑛, but with periods less than the deadline of task 𝜏𝑛.
The subset of 𝑆𝑛 containing those tasks with periods less than
the deadline of task 𝜏𝑛 is designated as 𝑆𝑛𝑙 with the number of
tasks in the subset being 𝑁𝑛𝑙. Tasks in subset 𝑆𝑛𝑙 can preempt
task 𝜏𝑛 multiple times before its deadline.

– Blocking delays produced by lower priority tasks. Blocking due
to any cause is included in the value of worst-case blocking time
𝑏𝑛.

• Now we will determine Effective Utilization and
compare it to the Utilization Bound

 REAL TIME SYSTEMS SHIRVAIKAR

56

Schedulability Analysis
• The effective task utilization based on all these possible

delays can now be defined as:

𝐸𝑛 =
𝑒𝑖
𝑝𝑖
+
1

𝑝𝑛
𝑆𝑛𝑙

𝑒𝑛 + 𝑏𝑛 + 𝑒𝑖
𝑆𝑛𝑔

 (EQ 5.3.4)

• Using this equation, the effective utilization of
each task 𝜏𝑛 is computed and compared to a
worst-case utilization bound.

 REAL TIME SYSTEMS SHIRVAIKAR

57

Schedulability Analysis
• The worst-case utilization bound for task 𝜏𝑛 is determined as

follows:

𝑈𝐵𝑛 =

𝑑𝑛
𝑝𝑛
,

𝑑𝑛
𝑝𝑛
≤
1

2

𝑁𝑛𝑙 + 1
2𝑑𝑛
𝑝𝑛

1
𝑁𝑛𝑙+1

− 1 + 1 −
𝑑𝑛
𝑝𝑛
,
𝑑𝑛
𝑝𝑛
>
1

2

 (EQ 5.3.5)

 REAL TIME SYSTEMS SHIRVAIKAR

58

Schedulability Analysis
• If 𝑑𝑛 = 𝑝𝑛 the equation reduces to

𝑈𝐵𝑛 = 𝑁𝑛𝑙 + 1 2
1
𝑁𝑛𝑙+1 − 1

 (EQ 5.3.6)

• If 𝐸𝑛 is less than or equal to the utilization bound value, the task
will meet its first deadline and therefore all future deadlines.

• Each task in the system must satisfy this test for a comprehensive
conclusion.

 REAL TIME SYSTEMS SHIRVAIKAR

59

Schedulability Analysis
• On the other hand, if the effective utilization of a

task exceeds the bound, no information is
conveyed.

• This is, a worst-case bound, by definition, is a
sufficient but not necessary condition.

• In the event that the utilization bound test is
inconclusive, the analysis must resort to schedule
building or alternative equivalent technique.

 REAL TIME SYSTEMS SHIRVAIKAR

60

Utilization Bound Test
Example 5.3.1: Using the utilization bound test.

The utilization bound test can be applied to the following task system.

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 5

M = number of processors = 1
 Period Deadline Execution Time Blocking Time

 𝑝1 = 8 𝑑1 = 2 𝑒1 = 1 𝑏1 = 0

 𝑝2 = 60 𝑑2 = 60 𝑒2 = 16 𝑏2 = 0

 𝑝3 = 36 𝑑3 = 28 𝑒3 = 4 𝑏3 = 0

 𝑝4 = 50 𝑑4 = 30 𝑒4 = 2 𝑏4 = 1

 𝑝5 = 30 𝑑5 = 30 𝑒5 = 2 𝑏5 = 0

Priority list = 𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5

The utilization bound test is required to be applied to each task
separately.

 REAL TIME SYSTEMS SHIRVAIKAR

61

Utilization Bound Test
Test task 𝝉𝟓:

Determine 𝑆5𝑔= 𝜏2, 𝜏3, 𝜏4 . This is the set of tasks with priorities greater than or

equal to that of task 𝜏5, and with periods greater than or equal to the deadline of
task 𝜏5. The number of tasks in this set is 𝑁5𝑔 = 3.

Determine 𝑆5𝑙= 𝜏1 . This is the set of tasks with priorities greater than or equal to
that of task 𝜏5, and with periods less than the deadline of task𝜏5. The number of
tasks in this set is 𝑁5𝑙 = 1.

Calculate
𝑑5

𝑝5
= 1 and use EQ 5.3.5 to calculate the utilization bound

 𝑈𝐵5 = 1 + 1 2
1

1+1 − 1 = 0.828

This value will be compared to the effective utilization of task 𝜏5calculated as
follows:

𝐸5 =
1

8
+
1

30
 [2 + 16 + 4 + 2] = 0.925

 REAL TIME SYSTEMS SHIRVAIKAR

62

Utilization Bound Test
The effective utilization of task 𝜏5 is larger than the utilization bound. This result
implies only that the utilization bound test cannot conclusively determine if task 𝜏5
will meet its first deadline. It does not imply that task 𝜏5 will miss its first deadline.

Obviously some other test must be applied if a determination of the schedulability
of task 𝜏5 is to be made. Such a test will be described in the following example, but
first the utilization bound test will be applied to the remaining tasks.

Test task 𝝉𝟒:

𝑆4𝑔= 𝜏2, 𝜏3 𝑁4𝑔 = 2

𝑆4𝑙= 𝜏1 𝑁4𝑙 = 1

𝑈𝐵4 = 2[2 0.6
0.5 − 1 + 1 − 0.6] = 0.591

𝐸4 =
1

8
+
1

50
 [2 + 1 + 16 + 4] = 0.585

Since the effective utilization is less that the utilization bound, task 𝜏4 will meet its
first deadline.

 REAL TIME SYSTEMS SHIRVAIKAR

63

Utilization Bound Test

Test task 𝝉𝟑:

𝑆3𝑔= 𝜏2 𝑁3𝑔 = 1

𝑆3𝑙= 𝜏1 𝑁3𝑙 = 1

𝑈𝐵3 = 2[1.55

0.5 − 1 + 1 − 0.77] = 0.716

𝐸3 =
1

8
+
1

36
 [4 + 12] = 0.569

Since the effective utilization is less that the utilization bound, task 𝜏3 will
meet its first deadline.

 REAL TIME SYSTEMS SHIRVAIKAR

64

Utilization Bound Test

Test task 𝝉𝟐:

𝑆2𝑔= 𝑁2𝑔 = 0

𝑆2𝑙= 𝜏1 𝑁2𝑙 = 1

𝑈𝐵2 = 1 + 1 2
1
1+1 − 1 = 0.828

𝐸2 =
1

8
+
1

60
 [12] = 0.325

Since the effective utilization is less that the utilization bound, task 𝜏2 will
meet its first deadline.

 REAL TIME SYSTEMS SHIRVAIKAR

65

Utilization Bound Test

Test task 𝝉𝟏:

𝑆1𝑔= 𝑁1𝑔 = 0

𝑆1𝑙= 𝑁1𝑙 = 0

𝑈𝐵1 =
𝑑1
𝑝1
=
2

8
= 0.25

𝐸1 =
1

8
 = 0.125

Since the effective utilization is less that the utilization bound, task 𝜏1 will
meet its first deadline.

 REAL TIME SYSTEMS SHIRVAIKAR

66

Utilization Bound Test
The results of the application of the utilization bound tests are
summarized here:

• The given priorities will produce a valid schedule for tasks 𝜏1, 𝜏2, 𝜏3,
and 𝜏4, since the effective utilization of each of these tasks does
not exceed the corresponding utilization bound.

• In the case of task 𝜏5 the utilization bound test failed to show that
the given priorities will produce a valid schedule. The test did not
show that a valid schedule could not be produced.

The utilization bound tests constitute sufficient but not necessary
conditions. They do not conclusively answer the question of the
schedulability of the task system. Schedule construction or some
other conclusive method is required for this purpose.

 REAL TIME SYSTEMS SHIRVAIKAR

67

Completion Time Test
• The obvious conclusive test is to construct the schedule, but

schedule construction is tedious.

• An analytical method exists as an alternative to the actual graphical
construction of the schedule.

• It can be easily implemented as a software algorithm on a
computer.

• The algorithm involves the solution of an iterative equation for the
first completion times of the tasks in a task system.

• If the first completion time of a task does not exceed the
associated deadline, then the task meets its first deadline and
consequently meets all deadlines.

 REAL TIME SYSTEMS SHIRVAIKAR

68

Completion Time Test
• The iterative equation for the completion time of a task is given by

𝐶𝑛 𝑖 + 1 = 𝑒𝑛 + 𝑏𝑛 +
𝐶𝑛(𝑖)

𝑝𝑗
𝑒𝑗

𝑛−1

𝑗=1

 (EQ 5.3.7)

𝐶𝑛() is the completion time computed iteratively until a stable value is attained,

𝑒𝑖 is the task execution time, 𝑏𝑛 is the worst case task blocking time,

𝑝𝑗 is the task period and the operator
𝑎

𝑏
 means the smallest integer greater

than or equal to
𝑎

𝑏
 .

The initial value is given by

𝐶𝑛 0 = 𝑏𝑛 + 𝑒𝑗

𝑛

𝑗=1

 (EQ 5.3.8)

 REAL TIME SYSTEMS SHIRVAIKAR

69

Utilization Bound Test
Example 5.3.1: Using the utilization bound test.

The utilization bound test can be applied to the following task system.

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 5

M = number of processors = 1
 Period Deadline Execution Time Blocking Time

 𝑝1 = 8 𝑑1 = 2 𝑒1 = 1 𝑏1 = 0

 𝑝2 = 60 𝑑2 = 60 𝑒2 = 16 𝑏2 = 0

 𝑝3 = 36 𝑑3 = 28 𝑒3 = 4 𝑏3 = 0

 𝑝4 = 50 𝑑4 = 30 𝑒4 = 2 𝑏4 = 1

 𝑝5 = 30 𝑑5 = 30 𝑒5 = 2 𝑏5 = 0

Priority list = 𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5

The utilization bound test is required to be applied to each task
separately.

 REAL TIME SYSTEMS SHIRVAIKAR

70

Completion Time Test
Example 5.3.2: Calculating precise completion times for periodic tasks.
Apply the completion time computation to task 𝜏5. For the initial value we obtain,

𝐶5 0 = 0 + 𝑒𝑗 = 1 + 16 + 4 + 2 + 2 = 25

5

𝑗=1

Going through the iterations:

𝑖 = 1:

𝐶5 1 = 𝑒5 + 𝑏5 +
𝐶5(0)

𝑝𝑗
𝑒𝑗

4

𝑗=1

= 2 + 0 + 4 + 16 + 4 + 2 = 28

𝑖 = 2:

𝐶5 2 = 𝑒5 + 𝑏5 +
𝐶5(1)

𝑝𝑗
𝑒𝑗

4

𝑗=1

= 2 + 0 + 4 + 16 + 4 + 2 = 28

The iteration has converged and indicates that the first completion of task 𝜏5 will
occur at time 𝑡 = 28, which is less than the deadline value 𝑑5 = 30

 REAL TIME SYSTEMS SHIRVAIKAR

71

Completion Time Test
• The calculation of the completion time of a task by the above

method is precise as no approximations or worst-case bounding
values are involved.

• To use the completion time test to show that a task system is
schedulable using a given priority list, the completion time of each
task must be determined.

• An easier approach to the problem of determining the
schedulability of a task system is to first apply the utilization bound
test to all tasks, and then to apply the completion time method to
those tasks for which the result of the utilization bound test is
inconclusive.

• This is essentially the method applied to the example problem.

 REAL TIME SYSTEMS SHIRVAIKAR

72

Task Priority Assignment
• Schedulability analysis presumes the existence of a task priority list

• The highest priority tasks should be executing at any particular
time assuming that they can be executed (not waiting on a
resource)

• Tasks are preemptively assigned to processors in accordance with
this priority list in a manner that ensures this rule

• How to choose task priority??

• We need a RULE or ALGORITHM for this purpose

 REAL TIME SYSTEMS SHIRVAIKAR

73

Task Priority Assignment
• Schedulability analysis presumes the existence of a task priority list

• The highest priority tasks should be executing at any particular
time assuming that they can be executed (not waiting on a
resource)

• Tasks are preemptively assigned to processors in accordance with
this priority list in a manner that ensures this rule

• How to choose task priority??

• We need a RULE or ALGORITHM for this purpose

 REAL TIME SYSTEMS SHIRVAIKAR

74

Task Priority Assignment
• It is important to recall that a scheduling algorithm is said to be

optimal if it always produces a valid schedule for every task system
that is feasible

• The known optimal task scheduling algorithms are all priority list
algorithms. Such an algorithm defines the basis upon which a
priority list of the tasks is constructed.

• The intrinsic importance of a task (some measure of how vital the
service performed by the task is to the overall functioning of the
real-time system) has no bearing on the assigned priority of the
task (Why?)

 REAL TIME SYSTEMS SHIRVAIKAR

75

Task Priority Assignment
• Each of these algorithms is optimal for a certain class of task

scheduling problem

– The deadline-monotonic algorithm assigns task priorities in order of

increasing deadlines. This is a static priority assignment algorithm.

– The rate-monotonic algorithm assigns task priorities in order of increasing
periods, i.e. decreasing rates (frequencies). This is a static priority
assignment algorithm.

– The earliest deadline algorithm schedules tasks in the following manner: at
each instant of time task priorities are assigned in increasing order of
currently impending deadlines. This is a dynamic priority assignment
algorithm, since the priority assignments vary as the execution proceeds.

 REAL TIME SYSTEMS SHIRVAIKAR

76

Deadline Monotonic Scheduling
• Assigns priorities to tasks in the order of increasing deadlines 𝑑𝑛

• Task priorities are static and do not change once they are assigned,
since a task deadline is a fixed parameter of the task system,
determined a priori, by the system engineers

• Static scheduling case - the designer applies the algorithm to create
a task priority list and then creates a schedule by preemptively
allocating tasks to processors based on their priority

• Dynamic scheduling case - the designer applies the algorithm to
create a task priority list and then creates task control blocks or
instances in the software based on these priorities (in a modern
RTOS task priority is parameter supplied as a part of the system call
when the task is created)

 REAL TIME SYSTEMS SHIRVAIKAR

77

Deadline Monotonic Scheduling
• It is an optimal static priority assignment algorithm for synchronous

task systems executing on one processor

• An optimal task scheduling algorithm is one that will result in a
valid task schedule if the task system is schedulable (even though
the solution is not guaranteed to be unique)

• Therefore one merely needs to assign task priorities in accordance
with the deadline-monotonic algorithm and then construct the
schedule through the longest period. If all tasks meet their first
deadlines the task system is feasible. Otherwise, it is not.

• In place of schedule construction, analytical methods can be used.

 REAL TIME SYSTEMS SHIRVAIKAR

78

Deadline Monotonic Scheduling
Example 5.4.1: The use of deadline monotonic scheduling.

The use of deadline-monotonic scheduling will be illustrated by the
construction of a schedule for the task system shown below.

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3

 Period Deadline Execution Time

 𝑝1 = 4 𝑑1 = 2 𝑒1 = 1

 𝑝2 = 6 𝑑2 = 4 𝑒2 = 2

 𝑝3 = 10 𝑑3 = 10 𝑒3 = 3

The processor utilization is determined to be

 𝑈 =
1

4
+
2

6
+
3

10
= 0.883 < 1.

 REAL TIME SYSTEMS SHIRVAIKAR

79

Deadline Monotonic Scheduling
The deadline utilization is determined to be

𝐷 =
1

2
+
2

4
+
3

10
= 1.3 > 1.

The first result implies that task system can possibly be scheduled.

The second result implies that it cannot be determined conclusively
whether task system can be scheduled.

The only known algorithm for answering the YES/NO question, “is this
task system schedulable?,” is to construct the schedule through the
longest period using an optimal static priority assignment.

If all tasks meet their first deadline, they will meet their deadlines for
all task releases, and the task system is schedulable.

 REAL TIME SYSTEMS SHIRVAIKAR

80

Deadline Monotonic Scheduling

Each indication of a release time is accompanied by the associated deadline.
Since the tasks are arbitrarily preemptable, the algorithm is free to suspend an
executing task at any point so that a higher priority task can execute. That is
precisely what happens to task 𝜏3 at times 4 and 6.

The schedule shows that all tasks meet their first deadlines, thus proving that
the task system is schedulable.

 REAL TIME SYSTEMS SHIRVAIKAR

81

Deadline Monotonic Scheduling
As an alternative to graphical schedule construction, analytical
techniques can be applied, since application of these analytical
techniques is the equivalent of schedule construction.

Example 5.4.2: Application of the completion time method.

It is informative to apply the completion time calculation to this task scheduling
problem. The above iterative equation must be applied:

Calculate the completion time for task 𝜏3:
𝐶3(0) = 1 + 2 + 3 = 6

𝐶3(1) = 3 +
6

6
2 +
6

4
1 = 7

𝐶3(2) = 3 +
7

6
2 +
7

4
1 = 9

 REAL TIME SYSTEMS SHIRVAIKAR

82

Deadline Monotonic Scheduling
𝐶3(3) = 3 +

9

6
2 +
9

4
1 = 10

𝐶3(4) = 3 +
10

6
2 +
10

4
1 = 10

The iteration bas converged, indicating that task 𝜏3 will complete at time 𝑡 = 10,
and this is verified by examination of the task schedule of Figure 5.18.

Calculate the completion time of task 𝜏2:
𝐶2(0) = 1 + 2 = 4

𝐶2(1) = 2 +
2

4
1 = 3

The iteration has converged, indicating that task 𝜏2 will complete at time 𝑡 = 3, and
this is verified by examination of the task schedule of Figure 5.18.

This example demonstrates the equivalency of schedule construction and the
analytical solution for completion times.

 REAL TIME SYSTEMS SHIRVAIKAR

83

Deadline Monotonic Scheduling
A summary of deadline-monotonic task scheduling is presented
below.
• The deadline-monotonic algorithm requires a task set that is preemptable and

independent, and it uses static task priorities.

• The deadline-monotonic algorithm is optimal for synchronous task systems on
one processor.

• There is no simple condition that is both necessary and sufficient for
determining if a task system is schedulable by deadline-monotonic scheduling,
but a utilization bound can be obtained using the equations in the previous
section.

• A synchronous task system on one processor can be tested by constructing the
schedule through the longest task period, and this can be accomplished in
pseudo-polynomial time. Either graphical or analytical methods can be used.

 REAL TIME SYSTEMS SHIRVAIKAR

84

Rate-Monotonic Scheduling
• The rate-monotonic priority assignment algorithm is a static

priority assignment algorithm that assigns task priorities in the
order of increasing periods.

• For task systems in which deadlines equal periods (𝑑𝑛 = 𝑝𝑛for all
tasks 𝜏𝑛), the rate-monotonic and deadline-monotonic algorithms
are equivalent, which results in the following conclusion.

For task systems in which 𝑑𝑛 = 𝑝𝑛for all tasks 𝜏𝑛, rate-monotonic priority
assignment is an optimal static assignment algorithm for synchronous task
systems on one processor

• Using the concept of a critical instant, a worst-case performance
bound for rate monotonic scheduling can be developed.

 REAL TIME SYSTEMS SHIRVAIKAR

85

Rate-Monotonic Scheduling
• The set of tasks 𝑆𝑛𝑔 consisting of those tasks with priorities greater

than or equal to that of task 𝜏𝑛, and with periods greater than or
equal to the deadline of task 𝜏𝑛 is empty. That is,𝑆𝑛𝑔 = {}, and

𝑁𝑛𝑔 = 0.

• The set of tasks 𝑆𝑛𝑙 consisting of those tasks with priorities higher
than that of task 𝜏𝑛, but with periods less than the deadline of task
𝜏𝑛 contains all tasks with priorities greater than that of task 𝜏𝑛.
That is, 𝑆𝑛𝑙 = 𝜏1, 𝜏2, ⋯ , 𝜏𝑛−1 and 𝑁𝑛𝑙 = 𝑛 − 1.

• The effective utilization of task 𝜏𝑛, then reduces to

 𝐸𝑛 =
𝑒𝑖

𝑝𝑖
+
𝑏𝑛

𝑝𝑛

𝑁
𝑖=1 (EQ 5.5.1)

 REAL TIME SYSTEMS SHIRVAIKAR

86

Rate-Monotonic Scheduling
• The utilization bound becomes simply

 𝐸𝑛 = 𝑛 2
1

𝑛 − 1 (EQ 5.5.2)

Furthermore, in the situation in which there is no blocking (𝑏𝑛 = 0), if task 𝜏𝑛
meets its deadline then so also do all higher priority tasks.

• The rate-monotonic scheduling algorithm will produce a valid
schedule for a synchronous system of 𝑁 independent tasks if -but
only if-the following inequality holds.

 𝑈 ≤ 𝑁 2
1

𝑁 − 1 (EQ 5.5.3)

• In the limit as 𝑁 grows large, the inequality approaches 𝐼𝑛 2 =
0.692, implying that processor utilization can be limited to values
as low as 69% solely by the scheduling process.

 REAL TIME SYSTEMS SHIRVAIKAR

87

Rate-Monotonic Scheduling
• The inequality of Equation 5.5.3 is a worst-case bound, and hence

can serve to determine that a task system is schedulable. It cannot
be used to determine if a task system is not schedulable.

Example 5.5.1: A simple example of rate-monotonic task scheduling.

A simple task system consisting of three periodic tasks is specified below.
𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3

 Period Execution Time

 𝑝1 = 20 𝑒1 = 4

 𝑝2 = 30 𝑒2 = 8

 𝑝3 = 70 𝑒3 = 20

The processor utilization is determined to be 𝑈 =
4

20
+
8

30
+
20

70
= 0.752.

The utilization bound is 3 2
1

3 − 1 = 0.780.

 REAL TIME SYSTEMS SHIRVAIKAR

88

Rate-Monotonic Scheduling

• Since the processor utilization is less than the utilization bound, this task
system is schedulable using rate-monotonic priority assignment.

• This conclusion is verified by the rate monotonic schedule depicted in Figure
5.19, in which the low priority task 𝜏3 is preempted twice but still completes
prior to its deadline at 𝑡 = 70.

 REAL TIME SYSTEMS SHIRVAIKAR

89

Rate-Monotonic Scheduling

• If the execution time of task 𝜏1 is increased from its value of 4 to a value of 8,

the processor utilization increases to a value 𝑈 =
8

20
+
8

30
+
20

70
= 0.952.

Since this value is greater than that of the utilization bound, no conclusion
can be drawn concerning the schedulability of the task system.

• The schedulability question can be answered by constructing the schedules
using the rate-monotonic priority assignment. The resulting schedule is
shown in Figure 5.20 and shows that all tasks meet their first deadlines, and
hence that the task system is schedulable.

 REAL TIME SYSTEMS SHIRVAIKAR

90

Rate-Monotonic Scheduling
• It should be noted that the schedule of Figure 5.20 shows no

processor idle time, yet the processor utilization was computed to
be 0.952.

• The cyclic schedules produced by these algorithms repeat at the
major cycle period. Yet, the schedule construction concern only the
first release time of each task. The schedule need be constructed
only through the longest period.

• The reason it is not necessary to examine the entire major cycle is
that, for synchronous task systems, if a task meets its first deadline
it will meet all deadlines for all releases. It is entirely possible for
the processor utilization over the first duration of the longest
period to be different from that over a complete major cycle.

 REAL TIME SYSTEMS SHIRVAIKAR

91

Rate-Monotonic Scheduling
Example 5.5.2: A second example of rate monotonic scheduling.

A second example of rate-monotonic scheduling-and one that illustrates the
phenomenon described above will be examined. In the treatment of this problem,
the schedule over the longest period will be compared to the schedule as it exists
over the complete major cycle. Since the pattern of task execution is periodic at the
major cycle rate, the task utilization over the major cycle determines the long term
utilization. The task system to be considered is described below.

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3

 Period Execution Time

 𝑝1 = 4 𝑒1 = 1

 𝑝2 = 6 𝑒2 = 2

 𝑝3 = 10 𝑒3 = 3

The processor utilization is determined to be 𝑈 =
1

4
+
2

6
+
3

10
= 0.883.

 REAL TIME SYSTEMS SHIRVAIKAR

92

Rate-Monotonic Scheduling

• The utilization bound for three tasks using rate-monotonic scheduling is
0.780, making the utilization bound test inconclusive. Schedule construction
over the longest period yields the result depicted in Figure 5.21 and indicates
that the task system is schedulable.

• There is no processor idle time indicated in this schedule, even though the
processor utilization was calculated to be 0.883.

 REAL TIME SYSTEMS SHIRVAIKAR

93

Rate-Monotonic Scheduling

A complete major cycle is depicted in Figure 5.22 and shows processor idle time

appearing over the remainder of the major cycle.

 REAL TIME SYSTEMS SHIRVAIKAR

94

Rate-Monotonic Scheduling
• A summary of rate-monotonic task scheduling is presented below.

– The rate-monotonic algorithm requires a task set that is preemptable and
independent, and uses static task priorities.

– Under the condition that deadlines equal periods, the rate-monotonic
priority assignment is an optimal static priority assignment for synchronous
task systems on one processor.

– There is no simple condition that is both necessary and sufficient for
determining if a task system is schedulable by rate-monotonic scheduling,
but a utilization bound can be simply stated as in Equation 5.5.3.

– A synchronous task system on one processor can be tested by constructing
the schedule through the longest task period, and this can be accomplished
in pseudo polynomial time. Alternatively, analytic completion time
algorithms can be used.

 REAL TIME SYSTEMS SHIRVAIKAR

95

Earliest Deadline Scheduling
• The deadline-monotonic and rate-monotonic algorithms are static

priority assignment algorithms. This means that the task priorities
do not change during system operation when the task system is
executing under control of a multitasking executive (RTOS).

• In the case of a cyclic executive, a static schedule is constructed in
advance for the system and the task priorities do not change as the
schedule is being developed.

• The earliest deadline algorithm, on the other hand, is a dynamic
priority assignment algorithm, which means that the assigned
priorities can change during execution by an RTOS, or during the
development of a static cyclic schedule.

 REAL TIME SYSTEMS SHIRVAIKAR

96

Earliest Deadline Scheduling
• The earliest deadline priority assignment is made as follows.

At each instant of time, task priorities are assigned in increasing order of
currently impending deadlines.

The analogy to the Critical Path Scheduling algorithm from the
aperiodic scheduling section is evident.

• Application of the algorithm requires a continuous determination
of the “time-to-deadline” for each task in the task system, and task
priorities are continuously assigned according to these times.

• What does it mean for a real-time operating system? the scheduler,
takes these decisions (after re-computing task priorities) upon each
tick of the real time clock.

 REAL TIME SYSTEMS SHIRVAIKAR

97

Earliest Deadline Scheduling
• The earliest deadline algorithm has optimal properties similar to

the prior algorithms (always produces a valid schedule for every
task system that is feasible).

The earliest deadline algorithm is an optimal dynamic priority assignment
algorithm for scheduling periodic tasks on a single processor.

• That the earliest deadline algorithm is optimal is particularly
significant in view of the fact that

𝑈 =
𝑒𝑛
𝑝𝑛

𝑁

𝑛=1

≤ 𝑀

represents a necessary and sufficient condition for a synchronous
task system to be feasible (if there is a valid schedule for the task
system) when deadlines equal periods.

 REAL TIME SYSTEMS SHIRVAIKAR

98

Earliest Deadline Scheduling
For synchronous task systems in which deadlines equal periods,
a necessary and sufficient condition for a task system to be
feasible is U ≤ 1 . If these conditions are met, earliest deadline
scheduling will produce a valid schedule.

• The term feasible is extremely important, implying no requirement
for static priorities, as opposed to the term schedulable (which
requires a schedule based on static priorities).

• Further, for arbitrary task systems that are not synchronous and
also with task deadlines that differ from task periods, the earliest
deadline algorithm is still optimal with respect to dynamic priority
assignment on a single processor.

 REAL TIME SYSTEMS SHIRVAIKAR

99

Earliest Deadline Scheduling
Example 5.6.1: An application of earliest deadline scheduling.

The application of earliest deadline scheduling to the task system specified below
will be used to determine if the task system is feasible.

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3

 Period Deadline Execution Time

 𝑝1 = 4 𝑑1 = 4 𝑒1 = 1

 𝑝2 = 6 𝑑2 = 6 𝑒2 = 2

 𝑝3 = 8 𝑑3 = 8 𝑒3 = 3

The processor utilization is determined to be 𝑈 =
1

4
+
2

6
+
3

8
= 0.958 < 1.

The rate-monotonic utilization bound for three tasks is 0.780; the test is
inconclusive. Since the earliest deadline algorithm is an optimal dynamic priority
assignment, application of this algorithm will produce a valid schedule if the task
system is feasible.

 REAL TIME SYSTEMS SHIRVAIKAR

100

Earliest Deadline Scheduling

The earliest deadline schedule is depicted in Figure 5.23 and indicates that all

tasks meet their first deadline.

This task system is therefore feasible on a single processor - it can be

scheduled on a single processor - but is not schedulable on a single processor.

 REAL TIME SYSTEMS SHIRVAIKAR

101

Earliest Deadline Scheduling
• That is, there is no static priority assignment that will produce a

valid schedule. That the task system is not schedulable may be
verified by attempting to apply the rate-monotonic algorithm - it
will not result in a valid schedule.

• Since the rate-monotonic algorithm is an optimal static priority
assignment algorithm, if it does not produce a valid schedule,
neither will any other static priority algorithm.

• For asynchronous task systems, the complexity of the task
scheduling problem increases considerably. There is no optimal
static priority assignment, as shown in the case of synchronous task
systems. The deadline-monotonic algorithm, is not optimal for
asynchronous task systems for any number of processors.

 REAL TIME SYSTEMS SHIRVAIKAR

102

Multiprocessor Scheduling
• When periodic tasks are to be scheduled on more than one processor, the

utilization bound equations apply and are repeated here as Equations 5.7.1
and 5.7.2.

• Equation 5.7.1 is a necessary but not sufficient condition, while Equation
5.7.2 is a sufficient but not necessary condition.

• When deadlines equal periods, these inequalities are equivalent and
represent a necessary and sufficient condition for feasibility.

𝑈 =
𝑒𝑛

𝑝𝑛

𝑁
1 ≤ 𝑀 (EQ 5.7.1)

𝐷 =
𝑒𝑛

𝑑𝑛

𝑁
1 ≤ 𝑀 (EQ 5.7.2)

• If the feasibility of a task system is not evident from the utilization bound of
Equation 5.7.2, the only known manner in which feasibility can be shown is
construction of a valid schedule (There is no optimal algorithm!!).

 REAL TIME SYSTEMS SHIRVAIKAR

103

Multiprocessor Scheduling
• The usual approach to schedule construction is the use of some systematic

technique as a heuristic method, such as rate-monotonic scheduling,
deadline-monotonic scheduling, earliest deadline scheduling, or some other
technique.

• Two possible methods for determining which tasks will be assigned to which
processors.

– In the non-partitioning method the 𝑀 processors are treated as a single
resource, and the 𝑀 tasks with the highest priorities are always
executing, with the priorities assigned by whatever heuristic method has
been chosen.

– In the partitioning method, tasks are partitioned into separate groups,
possibly in some optimal or near optimal manner, and each group is then
scheduled on a single processor. Tasks are assigned static priorities within
a group using whatever heuristic method has been chosen.

 REAL TIME SYSTEMS SHIRVAIKAR

104

Multiprocessor Scheduling
• The question of just how much of the infinite periodic schedule

need be constructed to prove feasibility, must be addressed. For
task systems with static priorities.
– For synchronous task systems the schedule is periodic with period
𝑃 = 𝑙𝑐𝑚(𝑝1, 𝑝2, . . . , 𝑝𝑁), so that the schedule must be constructed
through time 𝑡 = 𝑃.

– For asynchronous task systems the schedule becomes periodic at time
𝑟𝑚𝑎𝑥 + 𝑃, where 𝑟𝑚𝑎𝑥 is equal to the largest of the initial release times
of all the tasks in the system. Thus, it is necessary to construct the
schedule through time 𝑡 = 𝑟𝑚𝑎𝑥 + 2𝑃.

• For synchronous task systems on one processor it is necessary to
construct the schedule only through the longest period. The
additional complexity of multiprocessor scheduling requires
schedule construction over the longer base period 𝑃.

 REAL TIME SYSTEMS SHIRVAIKAR

105

Multiprocessor Scheduling
Example 5.7.1: Scheduling tasks on two processors by the partitioning and non-
partitioning methods.

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 4

M = number of processors = 2

 Period Deadline Execution Time

 𝑝1 = 2 𝑑1 = 2 𝑒1 = 1

 𝑝2 = 3 𝑑2 = 3 𝑒2 = 2

 𝑝3 = 4 𝑑3 = 4 𝑒3 = 2

 𝑝4 = 6 𝑑4 = 6 𝑒4 = 2

The processor utilization is determined to be

 𝑈 =
1

2
+
2

3
+
2

4
+
2

6
= 2.0 ≤ 2.

Even though the task system is known to be feasible, on the basis that deadlines equal
periods and that it satisfies this utilization bound, there is no known algorithm
guaranteed to produce a valid schedule. Heuristic algorithms can be applied but with no
guarantee of success.

 REAL TIME SYSTEMS SHIRVAIKAR

106

Multiprocessor Scheduling
If deadline-monotonic scheduling is selected as the heuristic algorithm, then either a
partitioning or non-partitioning approach must be used.

Partitioning Approach

In constructing this schedule, the following partitioning was used.

• Tasks 𝜏1 and 𝜏3 are assigned to processor 𝑃1 for execution.

• Tasks 𝜏2 and 𝜏4 are assigned to processor 𝑃2 for execution.

That is, tasks 𝜏1 and 𝜏3 are scheduled on processor 𝑃1 using deadline-monotonic
scheduling

independently of the scheduling of tasks 𝜏2 and 𝜏4 on processor 𝑃2, which is also
accomplished using deadline-monotonic scheduling.

(since deadlines equal periods in this example, deadline-monotonic and rate-monotonic
priority assignments are equivalent)

 REAL TIME SYSTEMS SHIRVAIKAR

107

Multiprocessor Scheduling

• The general requirement of a valid schedule for a synchronous task system
on multiple processors is that all tasks meet their deadlines in the interval
𝑃 = 𝑙𝑐𝑚(2,3,4,6) = 12, the base period of the task system.

• Two synchronous task systems that are independently scheduled on the two
processors, the single processor requirement for schedule validity can be
used - schedule need only be constructed through the longest period - time
𝑡 = 4 for processor 𝑃1, and time 𝑡 = 6 for processor 𝑃2. All tasks meet
their first deadlines, and hence the schedule is valid.

 REAL TIME SYSTEMS SHIRVAIKAR

108

Multiprocessor Scheduling
Non-Partitioning Method

• The combination of the two processors is considered a common pool of
computational resources which are assigned to execute the tasks. Two
highest priority tasks are executing at any particular time.

• The deadline-monotonic priority assignment fails to produce a valid
schedule. At time 𝑡 = 6, task 𝜏4 is released, but higher priority tasks 𝜏1, 𝜏2,
and 𝜏3 consume all execution time until time 𝑡 = 11, at which point there is
not enough time on either processor for 𝜏4 to complete by its deadline at
time 𝑡 = 12.

 REAL TIME SYSTEMS SHIRVAIKAR

109

Multiprocessor Scheduling
Example 5.7.2: A second example of scheduling tasks on two processors.

The second example of the scheduling of tasks on multiple processors using both the
partitioning and non-partitioning methods involves the following task system.

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 4

M = number of processors = 2

 Period Deadline Execution Time

 𝑝1 = 20 𝑑1 = 20 𝑒1 = 10

 𝑝2 = 30 𝑑2 = 30 𝑒2 = 11

 𝑝3 = 30 𝑑3 = 30 𝑒3 = 21

 𝑝4 = 40 𝑑4 = 40 𝑒4 = 8

The processor utilization is determined to be

 𝑈 =
10

20
+
11

20
+
21

30
+
8

40
= 1.767 ≤ 2.

Since deadlines = periods, this result is a necessary and sufficient condition for feasibility
of the task system on two processors. Use Deadline-monotonic scheduling

 REAL TIME SYSTEMS SHIRVAIKAR

110

Tasks 𝜏1 and 𝜏2 are assigned to processor 𝑃1 for execution.

Tasks 𝜏3 and 𝜏4 are assigned to processor 𝑃2 for execution.

The individual processor utilizations are

𝑈1 =
10

20
+
11

20
= 0.867 ≤ 1.

𝑈2 =
21

30
+
8

40
= 0.9 ≤ 1.

 Schedule fails when task 𝜏2 misses its first deadline at time 𝑡 = 30

Multiprocessor Scheduling

 REAL TIME SYSTEMS SHIRVAIKAR

111

Multiprocessor Scheduling

The deadline-monotonic scheduling algorithm allows ties to be arbitrarily
broken, and in this case the tie is broken to produce the priority list
(𝜏1, 𝜏2, 𝜏3, 𝜏4).

The resulting schedule attempt is shown in the diagram of Figure 5.27, which
shows task 𝜏3 missing its first deadline at time 𝑡 = 30.

It would appear that deadline-monotonic scheduling used as a heuristic
algorithm fails in this case.

 REAL TIME SYSTEMS SHIRVAIKAR

112

Multiprocessor Scheduling

If the priority list is changed to (𝜏1, 𝜏3, 𝜏2, 𝜏4), the valid schedule shown in Figure

5.28 results.

The fact that one priority list produces a valid schedule while the other does not
merely points out that the deadline-monotonic priority assignment is not
optimal in this situation. Will a dynamic priority algorithm work?

 REAL TIME SYSTEMS SHIRVAIKAR

113

Multiprocessor Scheduling
Example 5.7.3: Application of the earliest deadline method to the scheduling of tasks on
two processors.

The algorithm is applied in a manner that treats the multiple processors as a common
pool of computational resources, i.e. the non-partitioning method is used. The task
system for this example is specified below.

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3

M = number of processors = 2

 Period Deadline Execution Time

 𝑝1 = 40 𝑑1 = 40 𝑒1 = 20

 𝑝2 = 40 𝑑2 = 40 𝑒2 = 20

 𝑝3 = 44 𝑑3 = 44 𝑒3 = 40

The processor utilization is determined to be

 𝑈 =
20

40
+
20

40
+
40

44
= 1.909 ≤ 2.

The since deadlines = periods, this condition is both necessary and sufficient, and hence
the task system is feasible. In an attempt to find a valid schedule, the earliest deadline
priority assignment algorithm will be used.

 REAL TIME SYSTEMS SHIRVAIKAR

114

Multiprocessor Scheduling

The result is shown in Figure 5.29, where it can be seen that task 𝜏3 misses its
first deadline.

Thus, the earliest deadline priority assignment algorithm fails to produce a valid
schedule, even though the task system is feasible.

 REAL TIME SYSTEMS SHIRVAIKAR

115

A valid schedule for this task set is easily obtainable by assigning task 𝜏3 to
processor 𝑃1 and tasks 𝜏1 and 𝜏2 to processor 𝑃2, as illustrated in the task
schedule shown in Figure 5.30.

If the earliest deadline priority assignment algorithm were optimal, it would
have produced a valid schedule.

Even if a task system is known to be feasible on 𝑀 processors, there is no known
algorithm guaranteed to produce a valid schedule, i.e. there is no known optimal
algorithm.

Multiprocessor Scheduling

 REAL TIME SYSTEMS SHIRVAIKAR

116

Least Slack Time Priority Algorithm
Another dynamic priority assignment algorithm will be described: the least slack
time priority assignment algorithm. This algorithm requires that task priorities
be assigned in the following manner.

At any instant of time, tasks are assigned priorities in increasing order of slack
times. The slack time of a task 𝜏𝑛 at time 𝑡 is defined as

𝑡𝑠 = 𝑡𝑑 − 𝑒 𝑡 − 𝑡 (EQ 5.7.3)

where 𝑡𝑑 is the time of the impending deadline of task 𝜏𝑛and 𝑒 𝑡 is execution
time remaining in order to complete task 𝜏𝑛·

The slack time 𝑡𝑑 is thus the difference between the time available to meet the
impending deadline and the execution time required to complete the task.

 REAL TIME SYSTEMS SHIRVAIKAR

117

Least Slack Time Priority Algorithm
The least slack time algorithm assigns tasks to processors using the concept of
processor sharing introduced earlier.

The least slack time algorithm is not an optimal algorithm for scheduling
periodic tasks on multiple processors (remember there is no such polynomial
time scheduling algorithm) but has some desirable features

• If the earliest deadline algorithm produces a valid schedule, so also does the
least slack time algorithm.

• In the single processor case, the least slack time algorithm is optimal.

• For multiple processors there are task systems for which the least slack time
algorithm will produce a valid schedule when the earliest deadline algorithm
will not.

• The length of schedule construction required to determine if a schedule
produced by the least slack time algorithm is valid is identical to that
required of the earliest deadline algorithm or of a static priority algorithm.

 REAL TIME SYSTEMS SHIRVAIKAR

118

Example 5.7.4: Least slack time scheduling.

Processor sharing by definition treats the multiple processors as a common pool of
computational resources, i.e. the non-partitioning method is used. The task system for
this example is specified below.

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3

M = number of processors = 2

 Period Deadline Execution Time

 𝑝1 = 40 𝑑1 = 40 𝑒1 = 20

 𝑝2 = 40 𝑑2 = 40 𝑒2 = 20

 𝑝3 = 44 𝑑3 = 44 𝑒3 = 40

The processor utilization is determined to be

 𝑈 =
20

40
+
20

40
+
40

44
= 1.909 ≤ 2.

The since deadlines = periods, this condition is both necessary and sufficient, and hence
the task system is feasible.

Least Slack Time Priority Algorithm

 REAL TIME SYSTEMS SHIRVAIKAR

119

Least Slack Time Priority Algorithm

Processor sharing schedule using least slack time scheduling

 REAL TIME SYSTEMS SHIRVAIKAR

120

Least Slack Time Priority Algorithm

Equivalent realizable schedule.

The significance is that the least slack time algorithm produced a valid schedule
for this task system when the earliest deadline algorithm failed to do so.

 REAL TIME SYSTEMS SHIRVAIKAR

121

Periodic Task Scheduling Summary
The scheduling of periodic tasks is an important component of the design of
real-time systems software.

Periodic task systems can be either preemptive or non-preemptive, and this
characteristic has a profound effect on the ability to produce task schedules that
meet periodic timing requirements.

• In general, a task system can be characterized by specifying-for each task: a
period, a deadline, and an execution time. If blocking is possible, then a
worst case blocking time must also be specified. Execution times will
normally vary from one release of a task to another, a phenomenon known
as jitter. As a result, the execution times of tasks are often expressed as
worst-case execution times.

• Tasks can be scheduled statically using a cyclic executive approach. Static task
schedules are predetermined through the use of task scheduling algorithms
that employ the concept of task priority to determine how the various tasks
are assigned to the processor(s) as a function of time.

 REAL TIME SYSTEMS SHIRVAIKAR

122

Periodic Task Scheduling Summary
• The resulting schedule exhibits periodic behavior at a period called the major

cycle. Each major cycle is identical to the next. The major cycle is comprised
of some number of minor cycles. The processing within different minor
cycles is different, and the actual code executed within any given minor cycle
is called a frame.

• Synchronization requirements are met by dividing tasks into subtasks at the
synchronization points, and then scheduling the subtasks in such a manner
that the synchronization requirements are met. Cyclic executive systems are
scheduled by periodic, timer-driven interrupts.

• Tasks can be scheduled dynamically through use of a real-time multitasking
executive (RTOS). Tasks are assigned priorities and are dynamically scheduled
as the task system executes by the RTOS, which ensures that the highest
priority pending task is always selected for execution.

 REAL TIME SYSTEMS SHIRVAIKAR

123

Periodic Task Scheduling Summary
• Schedulability analysis is conducted by assuming a fixed execution time for

each of the tasks and applying appropriate analysis methods. This is
necessary for ensuring that a given task system will meet all deadlines for all
task releases. In many situations, the only known analysis method is
schedule construction.

• Synchronization requirements are met through the use of primitive
operations, such as semaphores, provided by the real-time operating system.

• In general, producing a static schedule for a cyclic executive system or
equivalently, determining if a task system is schedulable using a specified
priority assignment in a dynamically scheduled system can be a difficult
problem.

• Arbitrary task preemption increases scheduling flexibility. Arbitrary
preemption is a requirement in those few situations in which efficient
schedulability analysis is possible.

 REAL TIME SYSTEMS SHIRVAIKAR

124

Periodic Task Scheduling Summary
• Synchronous task systems with arbitrary task preemption exhibit a pseudo

polynomial time algorithm for determining if a particular priority assignment
will produce a valid schedule on a single processor. This algorithm consists of
constructing the schedule through the longest task period-or of the
analytical equivalent of schedule construction.

• In many cases of practical importance, upper bounds on processor utilization
relating to schedulability can be formulated and effectively used. Meeting
the bound requirement is a sufficient but not necessary condition of
schedulability for a task system.

• In many situations of practical importance, the only known algorithm for
determining if a given task system is feasible or schedulable is to construct
the schedule using a known optimal priority assignment. For scheduling on
multiple processors there is no known optimal priority assignment.

 REAL TIME SYSTEMS SHIRVAIKAR

125

Periodic Task Scheduling Summary

• There are optimal priority assignments for some classes of task systems. An
optimal priority assignment is a priority assignment that will produce a valid
schedule if one exists.

– The deadline-monotonic priority assignment is an optimal static priority
assignment for synchronous task systems on one processor.

– The rate-monotonic priority assignment is an optimal static priority
assignment for synchronous task systems on one processor when
deadlines equal periods.

– The earliest deadline priority assignment is an optimal dynamic priority
assignment for scheduling tasks, synchronous or asynchronous, on one
processor.

• Alternatively, priority assignments used in schedule construction for statically
scheduled systems, or those assigned in order to analyze task behavior in a
dynamically scheduled system, are used as heuristic approaches to the
problem.

