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Types of Tasks 
• Real-time systems software is typically designed using 

distinct deliverables known as tasks or threads 

• Fabrication of a schedule to determine whether the 
system can meet the deadline requirements 

• This estimation can be very difficult, making it 
important to ensure reserve system capacity and 
further to prevent critical system failure 

• Types of tasks: 

 - periodic – repetitive with hard deadlines 

 - aperiodic – asynchronous with soft deadlines 

 - sporadic – asynchronous with hard deadlines 
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Types of Task Scheduling 
• The array of categories of scheduling problems is 

rather broad: 

 - aperiodic or periodic 

 - preemptive or non-preemptive 

 - precedence constraints or no constraints 

 - synchronization among tasks or no synchronization 

 - static or dynamic scheduling 

 - deterministic or non- deterministic scheduling 

• Many (most?) task scheduling problems are NP-hard 

• lntuitive heuristic algorithms sometimes lead to 
unexpected and seeming paradoxical results 
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Aperiodic Task Scheduling 
• Establish analysis techniques extended later to the 

more practical problem of scheduling periodic tasks 

• The real time system considered here is assumed to 
have a fixed number of tasks 

• Execute each task a single time - cost function is the 
overall execution time of the entire task set 

 Minimize the time T required to execute N tasks  

 on M processors 

or 

 Determine if the set of N tasks on M processors  

 can be completed before a deadline D 
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Aperiodic - Non-Preemptive Scheduling With 
No Precedence Constraints 

This "simple" scheduling problem Is 

•  NP-hard for M = 2,but with pseudo-polynomial time solution 

•  NP-hard for M > 2. 

(If there are N tasks to be scheduled, the number of orderings-and 
thus the number of possible schedules is N! If N = 20,and if one 
candidate schedule could be checked In one microsecond, It would 
take 70,000 years to check all 201 schedules!) 

 

An heuristic algorithm for solution of this problem Is the Largest 
Processing Time algorithm:  

Whenever a processor is available, assign to it the available task 
with the largest execution time. 
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Aperiodic - Non-Preemptive Scheduling With 
No Precedence Constraints 

The problem statement includes: 

 •  M, the number of processors 

 •  N, the number of tasks 

 •  𝒆𝒏, the execution time for each task. 
Example: 𝑀 = 3     𝑒1 = 13,   𝑒2 = 8,    𝑒3 = 7 ,  𝑒4 = 6,   𝑒5 = 4  

    𝑁 = 7     𝑒6 = 2    𝑒7 = 2  

 

 

 

 

 

 

In this case an optimal schedule is produced! 
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Aperiodic - Non-Preemptive Scheduling With 
No Precedence Constraints 

A second example of Largest Processing Time algorithm:  

 𝑀 = 3     𝑒1 = 16,   𝑒2 = 13,    𝑒3 = 12 ,  𝑒4 = 8,   𝑒5 = 6  

 𝑁 = 8     𝑒6 = 6 ,  𝑒7 = 5,  𝑒8 = 2  

 

 

 

 

 

 

 

 

Here, T=24, but this is not optimum. 
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Aperiodic - Non-Preemptive Scheduling With 
No Precedence Constraints 

Second example with reordered tasks:  

 𝑀 = 3     𝑒1 = 16,   𝑒2 = 13,    𝑒3 = 12 ,  𝑒4 = 8,   𝑒5 = 6  

 𝑁 = 8     𝑒6 = 5 ,  𝑒7 = 5,  𝑒8 = 2  

 

 

 

 

 

 

 

 

min T=23, this is optimum. 

The problem with heuristic algorithms is that they are unpredictable 
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Aperiodic - Non-Preemptive Scheduling With 
No Precedence Constraints 

The Largest Processing Time algorithm has a performance bound of 

𝑇

𝑚𝑖𝑛𝑇
≤
4

3
−
1

3𝑀
  

 

In this case 𝑴 = 𝟑, this yields 

 
𝑇

𝑚𝑖𝑛𝑇
≤
11

9
 

 

And the example problems , of course, meet this bound. The worst 
case occurs for large M 

𝑇

𝑚𝑖𝑛𝑇
≤
4

3
 



           REAL TIME SYSTEMS                            SHIRVAIKAR  

10 

Aperiodic - Non-Preemptive With Precedence 
Constraints 

• Precedence constraints occur when one task or subtask must 
complete before another can begin execution. 

  

• The problem statement then includes 

 

•  M, the number of processors 

•  N, the number of tasks 

•  𝒆𝒏, the execution time for each task 

•  precedence constraint information for each task or subtask. 

 

• This problem Is NP-hard In the strong sense for M > 2 
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Aperiodic - Non-Preemptive With Precedence 
Constraints 

• Priority List Scheduling Algorithm: 
– There is an a priori priority list 𝝉𝟏, 𝝉𝟐, ⋯ , 𝝉𝑵  This list is not required to 

be consistent with the precedence constraints 

– Precedence constraints are specified in the form 𝝉𝒊 → 𝝉𝒋 (task 𝝉𝒊 must 

complete before task 𝝉𝒋 can start) 

– At any time t that a processor is available, the scheduler scans the 
priority and selects the highest priority task for which precedence 
constraints have been satisfied and assigns the available processor to that 
task 

– If two or more processors compete for a task, the tie is broken(arbitrarily) 
by assigning the task to the lowest indexed processor 

 

• If no task is available for a vacant processor, it idles 
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Aperiodic - Non-Preemptive With Precedence 
Constraints 

Priority List Scheduling example: 

 𝑀 = 2     𝑒1 = 8,   𝑒2 = 2,    𝑒3 = 3 ,  𝑒4 = 3,   𝑒5 = 7  

 𝑁 = 10     𝑒6 = 7 ,  𝑒7 = 18,  𝑒8 = 2 ,  𝑒9 = 8,  𝑒10 = 8  

 

 

 

 

 

 

 

 

min T=23, this is optimum. 

Priority List = 𝝉𝟏, 𝝉𝟐, 𝝉𝟑, 𝝉𝟒, 𝝉𝟓, 𝝉𝟔, 𝝉𝟕, 𝝉𝟖, 𝝉𝟗, 𝝉𝟏𝟎  
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Aperiodic - Non-Preemptive With Precedence 
Constraints 

The Priority List Scheduling is an heuristic algorithm. It is subject to 
anomalous behavior. 
 

 

 

 

This schedule is obviously optimum, with T = 33 

Change Priority List = 𝝉𝟏, 𝝉𝟐, 𝝉𝟑, 𝝉𝟖, 𝝉𝟒, 𝝉𝟓, 𝝉𝟔, 𝝉𝟕, 𝝉𝟗, 𝝉𝟏𝟎  

 

 

 

 

T = 35, suboptimal 
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Aperiodic - Non-Preemptive With Precedence 
Constraints 

• Decreasing execution times of tasks or increasing the number of 
processors is NOT guaranteed to produce a more optimal 
schedule using the Priority List Scheduling Algorithm 

 

• Two characteristics of the Priority List Scheduling algorithm are 
responsible for such anomalous behavior: 
– No processor Idle time can be inserted to aid in scheduling 

– No preemption is allowed 
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Aperiodic - Non-Preemptive With Precedence 
Constraints 

• There is a bound on these kinds of anomalous effects when 
Priority List Scheduling is used: 
– If a schedule is developed for a task system on M processors with a given 

set of execution times, precedence constraints, and task priorities, and 
producing schedule time T ; and a second schedule is developed on M' 
processors with a set of reduced execution times, a weaker set of 
precedence constraints, and a different priority list, and producing 
schedule time T', then 

𝑇′

𝑇
≤ 1 +

(𝑀 − 1)

𝑀′
 

 

– This is a strange bound, in essence limiting the damage that can be done 
by lessening the systems requirements. 

– When M = M', the bound is                   
𝑇′

𝑇
≤ 2 −

1

𝑀
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Aperiodic - Non-Preemptive With Precedence 
Constraints 

• One possible ordering of the priority list is in decreasing order of 
task execution times. (recall the Largest Processing Time 
algorithm) 

• This process is termed Decreasing Priority List Scheduling. 
– When precedence constraints are present, this algorithm can create the 

worst possible schedule bounded by the factor 

2 - 
1

𝑀
 

(precedence constraints can prohibit tasks from executing in the order specified by the 
priority list) 

– When there are no precedence constraints, this algorithm exhibits a 
performance bound of 

4

3
−
1

3𝑀
 which is substantially better than 2 - 

1

𝑀
 

• This bound implies that the schedule time produced by Decreasing Priority List 
scheduling will never exceed the optimum value by more than a factor of  1/3 
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Aperiodic - Preemptive With No Precedence 
Constraints 

• When there are no precedence constraints (or synchronization) 
this problem is solvable in polynomial time - that is, it is a 
tractable problem 
 

• An algorithm for producing an optimum schedule: 
– Given the task system 𝝉𝟏, 𝝉𝟐, ⋯ , 𝝉𝑵  in priority order of decreasing 

execution times 

– Compute the minimum schedule length T from the expression 

𝑇 = 𝑚𝑎𝑥 𝑚𝑎𝑥 𝑒𝑛 ,
1

𝑀
 𝑒𝑛

𝑁

𝑛=1

 

– Starting with the first processor, assign tasks by the priority order. If the 
duration of the task exceeds T, assign the remaining time to the next 
processor. 

– Continue until all tasks have been assigned 
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Aperiodic - Preemptive With No Precedence 
Constraints 

An example: Case 1: 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 5  

       𝑀 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 =  3  
𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 − 𝑛𝑜𝑛𝑒 

                               𝑒1 = 12,   𝑒2 = 9,    𝑒3 = 8 ,  𝑒4 = 7,   𝑒5 = 6  

Calculate  T = max {12,14} = 14  

Processor utilization will be always 100% - if  𝑚𝑎𝑥 𝑒𝑛 < 
1

𝑀
 𝑒𝑛
𝑁
𝑛=1  
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Aperiodic - Preemptive With No Precedence 
Constraints 

Example, Case 2: Increase e1 to 18 

  

Calculate T =max  { 18,16} = 18 

 

 

 

 

 

 

 

 

Processor utilization = 89% 
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Aperiodic – Processor Sharing 

• A conceptual view - a processor, rather than being considered a 
discrete unit, is treated as though it comprises a unit of 
processing capability to be divided into arbitrary fractions 
 

• Processor  sharing is a useful concept when dealing with 
precedence constraints. A conceptual processor sharing 
schedule can be converted to a realizable preemptive schedule 

• Simple Example 

 

M = number of processors = 2 

N = number of tasks = 5 
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Aperiodic – Processor Sharing 

• Without processor sharing, the optimum schedule is: 

 

 

 

 

 

 

 

 

 

 

  T=8, processor utilization = 5/8 
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Aperiodic – Processor Sharing 

• With processor sharing, the optimum schedule is: 

 

 

 

 

 

 

 

  T=7, processor utilization = 5/7 
 

The translation is not unique, since the assignments to processors 
can be made in several ways as long as a single task does not 
execute on two processors simultaneously 
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Aperiodic – Processor Sharing 
• The processor sharing schedule can be converted to a 

preemptive schedule: 

 

 

 

 

 

 

 

 

 

It is obvious that the process of preemption is needed to realize a 
processor sharing schedule. 
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Aperiodic - Preemptive With Precedence 
Constraints 

• This problem has a polynomial time solution if all task execution 
times are equal and 

– M ≤ 2, or 

– the precedence graph is a tree (each task has at most one 
immediate successor) 

 

• In these two special cases, a technique known as Critical Path 
Scheduling produces an optimal result. 

 

• In any other case the problem is NP-hard, in which case the 
Critical Path Scheduling technique is an heuristic. 
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Aperiodic - Preemptive With Precedence 
Constraints 

Critical Path Scheduling Algorithm:  
– Assign tasks to processors according to their relative urgency, starting at 

the highest level in the precedence graph. If there is a tie among a 
number of tasks 𝐴 for the last 𝐵 processors (𝐵 <  𝐴), then assign the 𝐴 
tasks to the 𝐵 processors using processor sharing, i.e. assign the 𝐵/𝐴 of a 
processor to each task. 

– Re-assign the tasks to processors as described above, when either 

• a task is completed, or 

• a time is reached at which one of the tasks is executing at a rate 
higher than that at which a task of higher relative urgency is 
executing, 

 

– The algorithm ensures that task reassignment occurs continuously in a 
manner that ensures the most critical tasks will always be executing. 
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Aperiodic - Preemptive With Precedence 
Constraints 

Relative urgency 

 

For a task relative urgency is defined as the maximum of the sums of the 
execution times along the various processing chains headed by the task in 
the yet unexecuted part of the precedence graph. 

 

Relative urgency for each task changes as the schedule is executed. 

 

Relative urgency for each task can be computed at every instant in the schedule. 
Practically, it can be computed periodically. 

 

If the schedule is computed prior to run-time this does not constitute an 
overhead. 
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Aperiodic - Preemptive With Precedence 
Constraints 

Critical Path Scheduling Algorithm Example with M = 2:  
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Aperiodic - Preemptive With Precedence 
Constraints 

Critical Path Scheduling Algorithm  

Example with M = 2:  

 

 

 

Conversion to a  

Realizable Schedule 



           REAL TIME SYSTEMS                            SHIRVAIKAR  

29 

Aperiodic - Preemptive With Precedence 
Constraints 

Critical Path Scheduling Algorithm Example with M = 3: 

 

 

 

 

 

 

 

Tree-like precedence graph  

T = 25.66   

Processor utilization = 97% 
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Aperiodic - Preemptive With Precedence Constraints 

Critical Path Scheduling  

Algorithm  

Example with M = 3:  

 

 

 

Conversion to a  

Realizable Schedule 



           REAL TIME SYSTEMS                            SHIRVAIKAR  

31 

Aperiodic Task Scheduling Summary 
We have covered the following aperiodic task scheduling algorithms: 

– Largest Processing Time Algorithm (no precedence constraints, 
no preemption) 

– Priority List Scheduling Algorithm (with precedence constraints, 
no preemption) 

– Decreasing Priority List Scheduling Algorithm (with precedence 
constraints, no preemption, LPT rule for priority) 

– Optimal Preemptive Scheduling Algorithm (no precedence 
constraints, with preemption, without processor sharing) 

– Processor Sharing Algorithm (with precedence constraints, with 
preemption, with processor sharing) 

– Critical Path Scheduling (with precedence constraints, with 
preemption, with processor sharing) 
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Aperiodic Task Scheduling Summary 
• The assumptions and characteristics were: 

– Tasks were aperiodic 

– Tasks have deterministic execution times 

– In most cases, the scheduling problem is intractable 

– Heuristics play an important part 

– Scheduling is static 

– Release times and deadlines have not been considered 

– The single processor case is usually trivial 

 

When tasks are periodic, the scheduling problem becomes much 
more complex. 

(For example, the single processor case can become very complex) 
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Periodic Task Scheduling 
• Real-time systems typically respond to a number of external or 

internal stimuli that are frequently periodic 
 

• Periodic task scheduling model becomes an important issue 
 

• Sets of periodic tasks in the presence of asynchronous 
requirements  
 

• Formalized as system parameters 
– Task Periods: Periodic tasks have periods which are defined as the time 

interval after which it must be repeated. Task periods are determined by the 
system requirements and may vary based upon the task specifics. 

 

– Precedence and/or synchronization constraints: Tasks do not typically 
execute independently of one another, and one task may generate data used 
by another task, or wait for it to complete. 

 
 



           REAL TIME SYSTEMS                            SHIRVAIKAR  

34 

Periodic Task Scheduling 
 

 

– Task Deadlines: The time by which task execution must be completed is 
termed a deadline. Usually a periodic task must be completed by the time it 
is again scheduled for execution (deadline= period), but a task may 
sometimes have a deadline shorter than the period. 

 

– Task execution times: The amount of time a task requires to complete is the 
execution time and knowledge of these are required in order to develop a 
schedule.  

 

– The execution time of a task may vary from one execution to the next. This is 
known as jitter and is due to differing execution paths taken through the 
code. Jitter can constitute a major problem in periodic task schedules, 
notably those implemented by deterministic, timer driven, cyclic executive 
software. 

 

 
 



           REAL TIME SYSTEMS                            SHIRVAIKAR  

35 

Task Model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Task Number: The n-th task is referenced as 𝝉𝒏. 

– Release Time: The release time of the n-th task is labeled 𝒓𝒏. 
The release time is the time at which a task is scheduled to 
execute. It may begin execution time any time after its release 
time, but it may not begin execution before its release time.  
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Task Model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Period: The period of the n-th task in 𝒑𝒏 and it is the time 
interval between successive release times of the task.  

– Deadline: The deadline of the n-th task is designated as 𝒅𝒏. The 
deadline is a time period following the release time of a task 
within which the task must execute to completion.  
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Task Model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Execution Time: The execution time of the n-th task is 𝒆𝒏. This is 
the time during which the task is actually executing.  

– The above task model does not require the actual 
execution of the task to be periodic, but rather that it 
is the release times that occur in a periodic manner.  
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Preemptive Task Model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– This kind of task execution may occur as a result of the development of a 
cyclic executive schedule in which the task is broken into subtasks in order to 
fit it into the schedule.  

– Alternatively, it may occur dynamically as a RTOS preempts and resumes the 
task during execution. In either case, the task cannot begin execution prior 
to its release time, and it must complete prior to its deadline. 
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Periodic Task Scheduling 
These choices affect the scheduling process. 

– Static or Dynamic Scheduling: Static schedules do not change during real-
time operation. They are generally implemented using a cyclic executive 
design driven by an interrupt timer. On the other hand, dynamic schedules 
may change during system operation and are implemented using a 
multitasking executive (RTOS) and priority-driven scheduling. 

– Preemption: Tasks may or may not be allowed to be preempted. For designs 
based on cyclic executives, preemption means that the tasks can be 
arbitrarily divided into subtasks to achieve synchronization, or in order to 
"fit" them into the schedule. For priority-driven systems, preemption implies 
that the real-time operating system is free to arbitrarily suspend an 
executing subtask in order for a higher priority subtask to execute. 

– Asynchronous processing: Most systems will have requirements represented 
by aperiodic tasks. The arrival of aperiodic tasks is usually signaled and 
handled by an interrupt, but normal interrupt processing may not always be 
sufficient and special server techniques must be applied. 
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Periodic Task Scheduling 
• The primary design question is whether or not a given task system 

with a specified set of task priorities can be scheduled in a manner 
that ensures all tasks meet their deadlines.  

 

• The general scheduling problem remains very difficult. 
Consequently, heuristic methods are often used. 

 

• An effective heuristic design method for generating cyclic 
schedules is to assign task priorities according to some algorithm, 
and then use these priorities to generate the schedule. 
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Periodic Task Scheduling 
• One method of performing the schedulability analysis of a 

dynamic, priority driven, task scheduling process is to build the 
schedule that would result if all tasks executed for precisely the 
execution time specified for the task. 

 

• Applies both to cyclic executive schedule design and to the 
schedulability analysis of dynamic, priority-driven systems 

 

• The arguments presented above imply that it does not matter 
whether the goal is to analyze the schedulability of dynamically 
scheduled, priority-driven systems using static task priorities, or to 
design a static cyclic schedule using an algorithm that assigns tasks 
according to a set of static priorities. The process is the same. A 
similar statement holds for the case of dynamic task priorities. 
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Static Task Scheduling 
• Static task scheduling refers to the situation in which a cyclic 

schedule is predetermined and the scheduler, in this case a cyclic 
executive, executes the tasks according to this schedule. 
– Static task scheduling with static task priorities refers to the situation in 

which a predetermined schedule is developed using an algorithm that 
assigns priorities to the tasks and then assigns tasks according to these 
priorities. The priorities are static, in that their values do not vary during the 
development of the schedule. 

 

– Static task scheduling with dynamic task priorities refers to the situation in 
which a predetermined schedule is developed using an algorithm that 
assigns priorities to the tasks and then schedules tasks according to these 
priorities. The priorities are dynamic, in that their values vary during the 
development of the schedule in accordance with the algorithm used for their 
determination. 



           REAL TIME SYSTEMS                            SHIRVAIKAR  

43 

Dynamic Task Scheduling 
• Dynamic task scheduling refers to the situation in which tasks are 

scheduled dynamically by a multitasking executive as the program 
executes. 
– Dynamic task scheduling with static task priorities refers to the situation in 

which the scheduler of a multitasking executive dynamically schedules tasks 
in accordance with a set of static task priorities. Static priorities, by 
definition, are preset and remain fixed throughout the execution of the 
program. 

 

– Dynamic task scheduling with dynamic task priorities refers to the situation 
in which the scheduler of a multitasking executive dynamically schedules 
tasks in accordance with a set of dynamic task priorities. Dynamic priorities, 
by definition, can be modified as the program executes. The manner in 
which these modifications take place is defined by the particular priority 
assignment algorithm. 
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Schedulability Analysis 
• The term schedulability analysis refers to those techniques used to 

determine if a given task system can be scheduled on one or more 
processors. 

 
– A task system is termed synchronous if the initial release times of all tasks 

are identical. Without loss of generality, this common release time can be 
taken to be zero. A task system that is not synchronous is said to be 
asynchronous. The complexity of a scheduling problem varies considerably 
depending on whether the task system is synchronous or asynchronous. 

 

– A schedule is said to be valid for a specific task system if the schedule 
provides for meeting the deadlines for all task requests. The term all task 
requests includes the infinity of requests that exist for a periodic task, and 
the question that is immediately raised concerns the problem of 
guaranteeing deadlines for an infinite time. 
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Schedulability Analysis 

– A task system is said to be feasible on 𝑀 identical processors if there is a 
valid schedule for the task system on 𝑀 identical processors. 

 

– A task system is said to be schedulable on 𝑀 identical processors if there is a 
valid schedule on 𝑀 identical processors produced by a static task priority 
assignment. The priority assignment may be used by a multitasking 
executive to dynamically schedule the tasks, or it may be used as a 
scheduling algorithm in developing a static task schedule. 

 

– A scheduling algorithm is said to be optimal if it always produces a valid 
schedule for every task system that is feasible. This use of the term optimal 
deserves particular attention. It implies that, if a task system is feasible, an 
optimal algorithm will produce a valid - but not necessarily uniquely so task 
schedule. 
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Schedulability Analysis 
• Processor utilization 𝑼, generalized to the 𝑀 processor 

case, produces the following inequality as a necessary but 
not sufficient condition for a task system to be feasible on 
𝑀 identical processors 

 

𝑈 =  
𝑒𝑛
𝑝𝑛

𝑁

𝑛=1

≤ 𝑀 

       (EQ 5.3.2) 
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Schedulability Analysis 
• Deadline utilization 𝑫 leads to the following 

inequality as a sufficient but not necessary 
condition for a task system to be feasible on 𝑀 
identical processors 

 

𝐷 =  
𝑒𝑛
𝑑𝑛

𝑁

𝑛=1

≤ 𝑀 

       (EQ 5.3.3) 
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Schedulability Analysis 
• For synchronous task systems in which all task deadlines 

are equal to the corresponding periods, i.e. 

    𝑑
𝑛
= 𝑝
𝑛

 for all 𝜏
𝑛

 

 

the inequality of the first equation above is both 
necessary and sufficient.  

 

YES/NO question “is the task system feasible?” 
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Schedulability Analysis 
• We need to determine whether a schedule produced by a 

particular algorithm for static priority assignment is valid 

 

– The response time of a task is the time interval between the 
release time of the task and the completion time of the task. 
The response time is different from the execution time of the 
task. While the execution time is the total of the actual time the 
task spends executing, the response time is comprised of the 
actual execution time plus any suspension time. 

 

– A critical instant of a task is a time at which the task is released 
and has the largest response time of all task releases. 
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Schedulability Analysis 
• The “critical instant” concept necessarily defines the 

extreme condition under which a task will meet its 
deadline under the worst case scenario.  

• It is easy to visualize that the task deadline will be met for 
all release times of the task if and only if the deadline is 
met when the release time occurs at a critical instant.  

• Under static task priorities, a critical instant will occur for 
a particular task if it is released simultaneously with all 
higher priority tasks in the system. Furthermore, if the 
task system is synchronous, the initial releases of all the 
tasks occur at 𝑡 =  0.  
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Schedulability Analysis 
• The following important result can be stated: 

For scheduling a synchronous task system on a single processor, 
there is a pseudo-polynomial time algorithm for deciding if the 
schedule produced by a given static priority assignment is valid. 
The algorithm is the construction of the schedule from a critical 
instant through the end of the longest period. 

 

• Instead of the graphical construction of the schedule it is 
sometimes more convenient to have analytical 
techniques to investigate task system schedulability on a 
single processor. 
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Schedulability Analysis 
• Analytical methods such as utilization bounds are 

sometimes more convenient to determine schedulability 
of a task system than creating a graphic schedule. 
 

– The execution time of the task itself is the actual time 
the task spends executing its code. 
 

– The preemption time is the time the task is suspended 
because of preemption by higher priority tasks. 
 

– The blocking time is the time the task is blocked by 
lower priority tasks. 
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Schedulability Analysis 
• Analytical methods such as utilization bounds are 

sometimes more convenient to determine schedulability 
of a task system than creating a graphic schedule. 
 

– The execution time of the task itself is the actual time 
the task spends executing its code. 
 

– The preemption time is the time the task is suspended 
because of preemption by higher priority tasks. 
 

– The blocking time is the time the task is blocked by 
lower priority tasks. 
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Schedulability Analysis 
• The concept of processor utilization that hitherto was 

based solely on task execution time has to be extended 
to include some additional effects: 
 

– Preemption by tasks with priorities greater than or equal to that 
of task 𝜏𝑛, but with periods greater than or equal to the 
deadline of task 𝜏𝑛. The set of tasks with priorities higher than 
that of task 𝜏𝑛 is designated as 𝑆𝑛. The subset of 𝑆𝑛 containing 
those tasks with periods greater than or equal to the deadline 
of task 𝜏𝑛 is designated as 𝑆𝑛𝑔 with the number of tasks in the 

subset being 𝑁𝑛𝑔. Tasks in subset 𝑆𝑛𝑔can preempt task 𝜏𝑛 only 

once before its deadline. 
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Schedulability Analysis 
– Preemption by tasks with priorities greater than or equal to that 

of task 𝜏𝑛, but with periods less than the deadline of task 𝜏𝑛. 
The subset of 𝑆𝑛 containing those tasks with periods less than 
the deadline of task 𝜏𝑛 is designated as 𝑆𝑛𝑙  with the number of 
tasks in the subset being 𝑁𝑛𝑙. Tasks in subset 𝑆𝑛𝑙 can preempt 
task 𝜏𝑛 multiple times before its deadline. 

 

– Blocking delays produced by lower priority tasks. Blocking due 
to any cause is included in the value of worst-case blocking time 
𝑏𝑛. 

 

• Now we will determine Effective Utilization and 
compare it to the Utilization Bound 
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Schedulability Analysis 
• The effective task utilization based on all these possible 

delays can now be defined as: 

 

𝐸𝑛 = 
𝑒𝑖
𝑝𝑖
+
1

𝑝𝑛
𝑆𝑛𝑙

𝑒𝑛 + 𝑏𝑛 + 𝑒𝑖
𝑆𝑛𝑔

 

         
       (EQ 5.3.4) 

• Using this equation, the effective utilization of 
each task 𝜏𝑛 is computed and compared to a 
worst-case utilization bound.  



           REAL TIME SYSTEMS                            SHIRVAIKAR  

57 

Schedulability Analysis 
• The worst-case utilization bound for task 𝜏𝑛 is determined as 

follows: 

𝑈𝐵𝑛 =

𝑑𝑛
𝑝𝑛
,                                                                               

𝑑𝑛
𝑝𝑛
≤
1

2

𝑁𝑛𝑙 + 1
2𝑑𝑛
𝑝𝑛

1
𝑁𝑛𝑙+1

− 1 + 1 −
𝑑𝑛
𝑝𝑛
,  
𝑑𝑛
𝑝𝑛
>
1

2

 

         
       (EQ 5.3.5) 
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Schedulability Analysis 
• If 𝑑𝑛 = 𝑝𝑛 the equation reduces to 

 

𝑈𝐵𝑛 = 𝑁𝑛𝑙 + 1 2
1
𝑁𝑛𝑙+1 − 1  

         
        (EQ 5.3.6) 

 

• If 𝐸𝑛 is less than or equal to the utilization bound value, the task 
will meet its first deadline and therefore all future deadlines.  

 

• Each task in the system must satisfy this test for a comprehensive 
conclusion. 
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Schedulability Analysis 
• On the other hand, if the effective utilization of a 

task exceeds the bound, no information is 
conveyed.  
 

• This is, a worst-case bound, by definition, is a 
sufficient but not necessary condition.  
 

• In the event that the utilization bound test is 
inconclusive, the analysis must resort to schedule 
building or alternative equivalent technique. 
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Utilization Bound Test 
Example 5.3.1: Using the utilization bound test. 

The utilization bound test can be applied to the following task system. 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 5  

M = number of processors = 1 
 Period  Deadline  Execution Time Blocking Time 

 𝑝1 = 8  𝑑1 = 2  𝑒1 = 1  𝑏1 = 0 

 𝑝2 = 60  𝑑2 = 60  𝑒2 = 16  𝑏2 = 0 

 𝑝3 = 36  𝑑3 = 28  𝑒3 = 4  𝑏3 = 0 

 𝑝4 = 50  𝑑4 = 30  𝑒4 = 2  𝑏4 = 1 

 𝑝5 = 30  𝑑5 = 30  𝑒5 = 2  𝑏5 = 0 

Priority list = 𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5  

The utilization bound test is required to be applied to each task 
separately. 
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Utilization Bound Test 
Test task 𝝉𝟓: 

Determine 𝑆5𝑔= 𝜏2, 𝜏3, 𝜏4 . This is the set of tasks with priorities greater than or 

equal to that of task 𝜏5, and with periods greater than or equal to the deadline of 
task  𝜏5. The number of tasks in this set is 𝑁5𝑔 = 3. 

Determine 𝑆5𝑙= 𝜏1 . This is the set of tasks with priorities greater than or equal to 
that of task 𝜏5, and with periods less than the deadline of task𝜏5. The number of 
tasks in this set is 𝑁5𝑙 = 1. 

Calculate  
𝑑5

𝑝5
= 1 and use EQ 5.3.5 to calculate the utilization bound 

   𝑈𝐵5 = 1 + 1 2
1

1+1 − 1 = 0.828 

This value will be compared to the effective utilization of task 𝜏5calculated as 
follows: 

𝐸5  =   
1

8
+
1

30
 [2 + 16 + 4 + 2]  = 0.925 
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Utilization Bound Test 
The effective utilization of task 𝜏5 is larger than the utilization bound. This result 
implies only that the utilization bound test cannot conclusively determine if task 𝜏5 
will meet its first deadline. It does not imply that task 𝜏5 will miss its first deadline.  

Obviously some other test must be applied if a determination of the schedulability 
of task 𝜏5 is to be made. Such a test will be described in the following example, but 
first the utilization bound test will be applied to the remaining tasks. 
 

Test task 𝝉𝟒: 

𝑆4𝑔= 𝜏2, 𝜏3   𝑁4𝑔 = 2 

𝑆4𝑙= 𝜏1   𝑁4𝑙 = 1 
 

𝑈𝐵4 =  2[2 0.6
0.5 − 1 + 1 − 0.6] = 0.591 

 

𝐸4  =   
1

8
+
1

50
 [2 + 1 + 16 + 4]  = 0.585 

Since the effective utilization is less that the utilization bound, task 𝜏4 will meet its 
first deadline. 

 



           REAL TIME SYSTEMS                            SHIRVAIKAR  

63 

Utilization Bound Test 

Test task 𝝉𝟑: 

𝑆3𝑔= 𝜏2   𝑁3𝑔 = 1 

𝑆3𝑙= 𝜏1   𝑁3𝑙 = 1 

 
𝑈𝐵3 = 2[ 1.55

0.5 − 1 + 1 − 0.77] = 0.716 

 

𝐸3  =   
1

8
+
1

36
 [4 + 12]  = 0.569 

 

Since the effective utilization is less that the utilization bound, task 𝜏3 will 
meet its first deadline. 
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Utilization Bound Test 

Test task 𝝉𝟐: 

𝑆2𝑔=   𝑁2𝑔 = 0 

𝑆2𝑙= 𝜏1   𝑁2𝑙 = 1 

 

𝑈𝐵2 = 1 + 1 2
1
1+1 − 1 = 0.828 

 

𝐸2  =   
1

8
+
1

60
 [12]  = 0.325 

 

Since the effective utilization is less that the utilization bound, task 𝜏2 will 
meet its first deadline. 
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Utilization Bound Test 

Test task 𝝉𝟏: 

𝑆1𝑔=   𝑁1𝑔 = 0 

𝑆1𝑙=   𝑁1𝑙 = 0 

 

𝑈𝐵1 = 
𝑑1
𝑝1
=
2

8
= 0.25 

 

𝐸1  =   
1

8
 = 0.125 

 

Since the effective utilization is less that the utilization bound, task 𝜏1 will 
meet its first deadline. 
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Utilization Bound Test 
The results of the application of the utilization bound tests are 
summarized here: 

• The given priorities will produce a valid schedule for tasks 𝜏1, 𝜏2, 𝜏3, 
and 𝜏4, since the effective utilization of each of these tasks does 
not exceed the corresponding utilization bound. 
 

• In the case of task 𝜏5 the utilization bound test failed to show that 
the given priorities will produce a valid schedule. The test did not 
show that a valid schedule could not be produced. 
 

The utilization bound tests constitute sufficient but not necessary 
conditions. They do not conclusively answer the question of the 
schedulability of the task system. Schedule construction or some 
other conclusive method is required for this purpose. 
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Completion Time Test 
• The obvious conclusive test is to construct the schedule, but 

schedule construction is tedious.  
 

• An analytical method exists as an alternative to the actual graphical 
construction of the schedule.  
 

• It can be easily implemented as a software algorithm on a 
computer.  
 

• The algorithm involves the solution of an iterative equation for the 
first completion times of the tasks in a task system.  
 

• If the first completion time of a task does not exceed the 
associated deadline, then the task meets its first deadline and 
consequently meets all deadlines.  
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Completion Time Test 
• The iterative equation for the completion time of a task is given by 

𝐶𝑛 𝑖 + 1 = 𝑒𝑛 + 𝑏𝑛 + 
𝐶𝑛(𝑖)

𝑝𝑗
𝑒𝑗

𝑛−1

𝑗=1

 

        (EQ 5.3.7) 

𝐶𝑛() is the completion time computed iteratively until a stable value is attained,  

𝑒𝑖  is the task execution time, 𝑏𝑛 is the worst case task blocking time, 

𝑝𝑗 is the task period and the operator 
𝑎

𝑏
 means the smallest integer greater 

than or equal to 
𝑎

𝑏
 .  

The initial value is given by 

𝐶𝑛 0 = 𝑏𝑛 + 𝑒𝑗

𝑛

𝑗=1

 

        (EQ 5.3.8) 
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Utilization Bound Test 
Example 5.3.1: Using the utilization bound test. 

The utilization bound test can be applied to the following task system. 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 5  

M = number of processors = 1 
 Period  Deadline  Execution Time Blocking Time 

 𝑝1 = 8  𝑑1 = 2  𝑒1 = 1  𝑏1 = 0 

 𝑝2 = 60  𝑑2 = 60  𝑒2 = 16  𝑏2 = 0 

 𝑝3 = 36  𝑑3 = 28  𝑒3 = 4  𝑏3 = 0 

 𝑝4 = 50  𝑑4 = 30  𝑒4 = 2  𝑏4 = 1 

 𝑝5 = 30  𝑑5 = 30  𝑒5 = 2  𝑏5 = 0 

Priority list = 𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5  

The utilization bound test is required to be applied to each task 
separately. 
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Completion Time Test 
Example 5.3.2: Calculating precise completion times for periodic tasks. 
Apply the completion time computation to task 𝜏5. For the initial value we obtain, 

𝐶5 0 = 0 + 𝑒𝑗 = 1 + 16 + 4 + 2 + 2 = 25

5

𝑗=1

 

Going through the iterations: 

𝑖 = 1:  

𝐶5 1 = 𝑒5 + 𝑏5 + 
𝐶5(0)

𝑝𝑗
𝑒𝑗

4

𝑗=1

= 2 + 0 + 4 + 16 + 4 + 2 = 28 

𝑖 = 2:  

𝐶5 2 = 𝑒5 + 𝑏5 + 
𝐶5(1)

𝑝𝑗
𝑒𝑗

4

𝑗=1

= 2 + 0 + 4 + 16 + 4 + 2 = 28 

The iteration has converged and indicates that the first completion of task 𝜏5 will 
occur at time 𝑡 =  28, which is less than the deadline value 𝑑5 = 30 
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Completion Time Test 
• The calculation of the completion time of a task by the above 

method is precise as no approximations or worst-case bounding 
values are involved.  

• To use the completion time test to show that a task system is 
schedulable using a given priority list, the completion time of each 
task must be determined.  

• An easier approach to the problem of determining the 
schedulability of a task system is to first apply the utilization bound 
test to all tasks, and then to apply the completion time method to 
those tasks for which the result of the utilization bound test is 
inconclusive.  

• This is essentially the method applied to the example problem. 
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Task Priority Assignment 
• Schedulability analysis presumes the existence of a task priority list 

 

• The highest priority tasks should be executing at any particular 
time assuming that they can be executed (not waiting on a 
resource) 

 

• Tasks are preemptively assigned to processors in accordance with 
this priority list in a manner that ensures this rule 

 

• How to choose task priority?? 

 

• We need a RULE or ALGORITHM for this purpose 
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Task Priority Assignment 
• Schedulability analysis presumes the existence of a task priority list 

 

• The highest priority tasks should be executing at any particular 
time assuming that they can be executed (not waiting on a 
resource) 

 

• Tasks are preemptively assigned to processors in accordance with 
this priority list in a manner that ensures this rule 

 

• How to choose task priority?? 

 

• We need a RULE or ALGORITHM for this purpose 
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Task Priority Assignment 
• It is important to recall that a scheduling algorithm is said to be 

optimal if it always produces a valid schedule for every task system 
that is feasible 

 

• The known optimal task scheduling algorithms are all priority list 
algorithms. Such an algorithm defines the basis upon which a 
priority list of the tasks is constructed.  

 

• The intrinsic importance of a task (some measure of how vital the 
service performed by the task is to the overall functioning of the 
real-time system) has no bearing on the assigned priority of the 
task (Why?) 
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Task Priority Assignment 
• Each of these algorithms is optimal for a certain class of task 

scheduling problem 

 
– The deadline-monotonic algorithm assigns task priorities in order of 

increasing deadlines. This is a static priority assignment algorithm. 

 

– The rate-monotonic algorithm assigns task priorities in order of increasing 
periods, i.e. decreasing rates (frequencies). This is a static priority 
assignment algorithm. 

 

– The earliest deadline algorithm schedules tasks in the following manner: at 
each instant of time task priorities are assigned in increasing order of 
currently impending deadlines. This is a dynamic priority assignment 
algorithm, since the priority assignments vary as the execution proceeds. 
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Deadline Monotonic Scheduling 
• Assigns priorities to tasks in the order of increasing deadlines 𝑑𝑛 

 

• Task priorities are static and do not change once they are assigned, 
since a task deadline is a fixed parameter of the task system, 
determined a priori, by the system engineers 
 

• Static scheduling case - the designer applies the algorithm to create 
a task priority list and then creates a schedule by preemptively 
allocating tasks to processors based on their priority 
 

• Dynamic scheduling case - the designer applies the algorithm to 
create a task priority list and then creates task control blocks or 
instances in the software based on these priorities  (in a modern 
RTOS task priority is parameter supplied as a part of the system call 
when the task is created)   
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Deadline Monotonic Scheduling 
• It is an optimal static priority assignment algorithm for synchronous 

task systems executing on one processor 
 

• An optimal task scheduling algorithm is one that will result in a 
valid task schedule if the task system is schedulable (even though 
the solution is not guaranteed to be unique) 

 

• Therefore one merely needs to assign task priorities in accordance 
with the deadline-monotonic algorithm and then construct the 
schedule through the longest period. If all tasks meet their first 
deadlines the task system is feasible. Otherwise, it is not. 

 

• In place of schedule construction, analytical methods can be used. 
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Deadline Monotonic Scheduling 
Example 5.4.1: The use of deadline monotonic scheduling. 

The use of deadline-monotonic scheduling will be illustrated by the 
construction of a schedule for the task system shown below. 
 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3 

 Period   Deadline  Execution Time 

 𝑝1 = 4   𝑑1 = 2   𝑒1 = 1 

 𝑝2 = 6   𝑑2 = 4   𝑒2 = 2 

 𝑝3 = 10  𝑑3 = 10  𝑒3 = 3 

The processor utilization is determined to be 

 𝑈 =
1

4
+
2

6
+
3

10
= 0.883 < 1. 
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Deadline Monotonic Scheduling 
The deadline utilization is determined to be  

𝐷 =
1

2
+
2

4
+
3

10
= 1.3 > 1. 

 

The first result implies that task system can possibly be scheduled.  
 

The second result implies that it cannot be determined conclusively 
whether task system can be scheduled.  
 

The only known algorithm for answering the YES/NO question, “is this 
task system schedulable?,” is to construct the schedule through the 
longest period using an optimal static priority assignment.  
 

If all tasks meet their first deadline, they will meet their deadlines for 
all task releases, and the task system is schedulable.  
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Deadline Monotonic Scheduling 

 

Each indication of a release time is accompanied by the associated deadline. 
Since the tasks are arbitrarily preemptable, the algorithm is free to suspend an 
executing task at any point so that a higher priority task can execute. That is 
precisely what happens to task 𝜏3 at times 4 and 6.  

The schedule shows that all tasks meet their first deadlines, thus proving that 
the task system is schedulable. 
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Deadline Monotonic Scheduling 
As an alternative to graphical schedule construction, analytical 
techniques can be applied, since application of these analytical 
techniques is the equivalent of schedule construction. 
 

Example 5.4.2: Application of the completion time method. 

It is informative to apply the completion time calculation to this task scheduling 
problem. The above iterative equation must be applied: 

 

Calculate the completion time for task 𝜏3: 
𝐶3(0) = 1 + 2 + 3 = 6 

 

𝐶3(1) = 3 +
6

6
2 +
6

4
1 = 7 

 

𝐶3(2) = 3 +
7

6
2 +
7

4
1 = 9 
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Deadline Monotonic Scheduling 
𝐶3(3) = 3 +

9

6
2 +
9

4
1 = 10 

 

𝐶3(4) = 3 +
10

6
2 +
10

4
1 = 10 

The iteration bas converged, indicating that task 𝜏3 will complete at time 𝑡 = 10, 
and this is verified by examination of the task schedule of Figure 5.18. 
 

Calculate the completion time of task 𝜏2: 
𝐶2(0) = 1 + 2 = 4 

 

𝐶2(1) = 2 +
2

4
1 = 3 

The iteration has converged, indicating that task 𝜏2 will complete at time 𝑡 = 3, and 
this is verified by examination of the task schedule of Figure 5.18. 

This example demonstrates the equivalency of schedule construction and the 
analytical solution for completion times. 
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Deadline Monotonic Scheduling 
A summary of deadline-monotonic task scheduling is presented 
below. 
• The deadline-monotonic algorithm requires a task set that is preemptable and 

independent, and it uses static task priorities. 
 

• The deadline-monotonic algorithm is optimal for synchronous task systems on 
one processor. 
 

• There is no simple condition that is both necessary and sufficient for 
determining if a task system is schedulable by deadline-monotonic scheduling, 
but a utilization bound can be obtained using the equations in the previous 
section. 
 

• A synchronous task system on one processor can be tested by constructing the 
schedule through the longest task period, and this can be accomplished in 
pseudo-polynomial time. Either graphical or analytical methods can be used. 
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Rate-Monotonic Scheduling 
• The rate-monotonic priority assignment algorithm is a static 

priority assignment algorithm that assigns task priorities in the 
order of increasing periods.  
 

• For task systems in which deadlines equal periods (𝑑𝑛 = 𝑝𝑛for all 
tasks 𝜏𝑛), the rate-monotonic and deadline-monotonic algorithms 
are equivalent, which results in the following conclusion. 
 

For task systems in which 𝑑𝑛 = 𝑝𝑛for all tasks 𝜏𝑛, rate-monotonic priority 
assignment is an optimal static assignment algorithm for synchronous task 
systems on one processor 

 

• Using the concept of a critical instant, a worst-case performance 
bound for rate monotonic scheduling can be developed.  
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Rate-Monotonic Scheduling 
• The set of tasks 𝑆𝑛𝑔 consisting of those tasks with priorities greater 

than or equal to that of task 𝜏𝑛, and with periods greater than or 
equal to the deadline of task 𝜏𝑛 is empty. That is,𝑆𝑛𝑔 = {}, and 

𝑁𝑛𝑔 = 0.  
 

• The set of tasks 𝑆𝑛𝑙 consisting of those tasks with priorities higher 
than that of task 𝜏𝑛, but with periods less than the deadline of task 
𝜏𝑛 contains all tasks with priorities greater than that of task 𝜏𝑛. 
That is, 𝑆𝑛𝑙 = 𝜏1, 𝜏2, ⋯ , 𝜏𝑛−1  and 𝑁𝑛𝑙 = 𝑛 − 1. 
 

• The effective utilization of task 𝜏𝑛, then reduces to 
 

  𝐸𝑛 =  
𝑒𝑖

𝑝𝑖
+
𝑏𝑛

𝑝𝑛

𝑁
𝑖=1     (EQ 5.5.1) 
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Rate-Monotonic Scheduling 
• The utilization bound becomes simply 

 

  𝐸𝑛 = 𝑛 2
1

𝑛 − 1    (EQ 5.5.2) 
 

Furthermore, in the situation in which there is no blocking (𝑏𝑛  =  0), if task 𝜏𝑛 
meets its deadline then so also do all higher priority tasks. 
 

• The rate-monotonic scheduling algorithm will produce a valid 
schedule for a synchronous system of 𝑁 independent tasks if -but 
only if-the following inequality holds. 

  𝑈 ≤ 𝑁 2
1

𝑁 − 1    (EQ 5.5.3) 
 

• In the limit as 𝑁 grows large, the inequality approaches 𝐼𝑛 2 =
0.692, implying that processor utilization can be limited to values 
as low as 69% solely by the scheduling process.  
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Rate-Monotonic Scheduling 
• The inequality of Equation 5.5.3 is a worst-case bound, and hence 

can serve to determine that a task system is schedulable. It cannot 
be used to determine if a task system is not schedulable. 
 

Example 5.5.1: A simple example of rate-monotonic task scheduling. 

A simple task system consisting of three periodic tasks is specified below. 
𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3 

 Period   Execution Time 

 𝑝1 = 20   𝑒1 = 4 

 𝑝2 = 30   𝑒2 = 8 

 𝑝3 = 70   𝑒3 = 20 

The processor utilization is determined to be 𝑈 =
4

20
+
8

30
+
20

70
= 0.752. 

The utilization bound is 3 2
1

3 − 1 = 0.780. 
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Rate-Monotonic Scheduling 

• Since the processor utilization is less than the utilization bound, this task 
system is schedulable using rate-monotonic priority assignment.  

 

• This conclusion is verified by the rate monotonic schedule depicted in Figure 
5.19, in which the low priority task 𝜏3 is preempted twice but still completes 
prior to its deadline at 𝑡 =  70. 
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Rate-Monotonic Scheduling 

• If the execution time of task 𝜏1 is increased from its value of 4 to a value of 8, 

the processor utilization increases to a value 𝑈 =
8

20
+
8

30
+
20

70
= 0.952. 

Since this value is greater than that of the utilization bound, no conclusion 
can be drawn concerning the schedulability of the task system.  

• The schedulability question can be answered by constructing the schedules 
using the rate-monotonic priority assignment. The resulting schedule is 
shown in Figure 5.20 and shows that all tasks meet their first deadlines, and 
hence that the task system is schedulable.  
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Rate-Monotonic Scheduling 
• It should be noted that the schedule of Figure 5.20 shows no 

processor idle time, yet the processor utilization was computed to 
be 0.952.  

 

• The cyclic schedules produced by these algorithms repeat at the 
major cycle period. Yet, the schedule construction concern only the 
first release time of each task. The schedule need be constructed 
only through the longest period.  
 

• The reason it is not necessary to examine the entire major cycle is 
that, for synchronous task systems, if a task meets its first deadline 
it will meet all deadlines for all releases. It is entirely possible for 
the processor utilization over the first duration of the longest 
period to be different from that over a complete major cycle. 
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Rate-Monotonic Scheduling 
Example 5.5.2: A second example of rate monotonic scheduling. 

A second example of rate-monotonic scheduling-and one that illustrates the 
phenomenon described above will be examined. In the treatment of this problem, 
the schedule over the longest period will be compared to the schedule as it exists 
over the complete major cycle. Since the pattern of task execution is periodic at the 
major cycle rate, the task utilization over the major cycle determines the long term 
utilization. The task system to be considered is described below. 

 
𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3 

 Period   Execution Time 

 𝑝1 = 4   𝑒1 = 1 

 𝑝2 = 6   𝑒2 = 2 

 𝑝3 = 10   𝑒3 = 3 

The processor utilization is determined to be 𝑈 =
1

4
+
2

6
+
3

10
= 0.883. 
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Rate-Monotonic Scheduling 

• The utilization bound for three tasks using rate-monotonic scheduling is 
0.780, making the utilization bound test inconclusive. Schedule construction 
over the longest period yields the result depicted in Figure 5.21 and indicates 
that the task system is schedulable.  
 

• There is no processor idle time indicated in this schedule, even though the 
processor utilization was calculated to be 0.883.  
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Rate-Monotonic Scheduling 

A complete major cycle is depicted in Figure 5.22 and shows processor idle time  

appearing over the remainder of the major cycle.  
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Rate-Monotonic Scheduling 
• A summary of rate-monotonic task scheduling is presented below. 

– The rate-monotonic algorithm requires a task set that is preemptable and 
independent, and uses static task priorities. 
 

– Under the condition that deadlines equal periods, the rate-monotonic 
priority assignment is an optimal static priority assignment for synchronous 
task systems on one processor. 
 

– There is no simple condition that is both necessary and sufficient for 
determining if a task system is schedulable by rate-monotonic scheduling, 
but a utilization bound can be simply stated as in Equation 5.5.3. 
 

– A synchronous task system on one processor can be tested by constructing 
the schedule through the longest task period, and this can be accomplished 
in pseudo polynomial time. Alternatively, analytic completion time 
algorithms can be used. 
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Earliest Deadline Scheduling 
• The deadline-monotonic and rate-monotonic algorithms are static 

priority assignment algorithms. This means that the task priorities 
do not change during system operation when the task system is 
executing under control of a multitasking executive (RTOS).  
 

• In the case of a cyclic executive, a static schedule is constructed in 
advance for the system and the task priorities do not change as the 
schedule is being developed.  
 

• The earliest deadline algorithm, on the other hand, is a dynamic 
priority assignment algorithm, which means that the assigned 
priorities can change during execution by an RTOS, or during the 
development of a static cyclic schedule.  
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Earliest Deadline Scheduling 
• The earliest deadline priority assignment is made as follows. 

 

At each instant of time, task priorities are assigned in increasing order of 
currently impending deadlines.  

 

The analogy to the Critical Path Scheduling algorithm from the 
aperiodic scheduling section is evident. 
 

• Application of the algorithm requires a continuous determination 
of the “time-to-deadline” for each task in the task system, and task 
priorities are continuously assigned according to these times.  
 

• What does it mean for a real-time operating system? the scheduler, 
takes these decisions (after re-computing task priorities) upon each 
tick of the real time clock.  
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Earliest Deadline Scheduling 
• The earliest deadline algorithm has optimal properties similar to 

the prior algorithms (always produces a valid schedule for every 
task system that is feasible). 
 

The earliest deadline algorithm is an optimal dynamic priority assignment 
algorithm for scheduling periodic tasks on a single processor. 

 

• That the earliest deadline algorithm is optimal is particularly 
significant in view of the fact that  

𝑈 =  
𝑒𝑛
𝑝𝑛

𝑁

𝑛=1

≤ 𝑀 

represents a necessary and sufficient condition for a synchronous 
task system to be feasible (if there is a valid schedule for the task 
system) when deadlines equal periods. 
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Earliest Deadline Scheduling 
For synchronous task systems in which deadlines equal periods, 
a necessary and sufficient condition for a task system to be 
feasible is  U ≤ 1 . If these conditions are met, earliest deadline 
scheduling will produce a valid schedule. 

 

• The term feasible is extremely important, implying no requirement 
for static priorities, as opposed to the term schedulable (which 
requires a schedule based on static priorities).  

 

• Further, for arbitrary task systems that are not synchronous and 
also with task deadlines that differ from task periods, the earliest 
deadline algorithm is still optimal with respect to dynamic priority 
assignment on a single processor. 
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Earliest Deadline Scheduling 
Example 5.6.1: An application of earliest deadline scheduling. 

The application of earliest deadline scheduling to the task system specified below 
will be used to determine if the task system is feasible. 
 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3 
 

 Period   Deadline  Execution Time 

 𝑝1 = 4   𝑑1 = 4   𝑒1 = 1 

 𝑝2 = 6   𝑑2 = 6   𝑒2 = 2 

 𝑝3 = 8   𝑑3 = 8   𝑒3 = 3 
 

The processor utilization is determined to be  𝑈 =
1

4
+
2

6
+
3

8
= 0.958 < 1. 

The rate-monotonic utilization bound for three tasks is 0.780; the test is 
inconclusive. Since the earliest deadline algorithm is an optimal dynamic priority 
assignment, application of this algorithm will produce a valid schedule if the task 
system is feasible. 
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Earliest Deadline Scheduling 

The earliest deadline schedule is depicted in Figure 5.23 and indicates that all 

tasks meet their first deadline.  

 

This task system is therefore feasible on a single processor - it can be 

scheduled on a single processor - but is not schedulable on a single processor.  
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Earliest Deadline Scheduling 
• That is, there is no static priority assignment that will produce a 

valid schedule. That the task system is not schedulable may be 
verified by attempting to apply the rate-monotonic algorithm - it 
will not result in a valid schedule.  

• Since the rate-monotonic algorithm is an optimal static priority 
assignment algorithm, if it does not produce a valid schedule, 
neither will any other static priority algorithm. 
 

• For asynchronous task systems, the complexity of the task 
scheduling problem increases considerably. There is no optimal 
static priority assignment, as shown in the case of synchronous task 
systems. The deadline-monotonic algorithm, is not optimal for 
asynchronous task systems for any number of processors. 



           REAL TIME SYSTEMS                            SHIRVAIKAR  

102 

Multiprocessor Scheduling 
• When periodic tasks are to be scheduled on more than one processor, the 

utilization bound equations apply and are repeated here as Equations 5.7.1 
and 5.7.2.  

• Equation 5.7.1 is a necessary but not sufficient condition, while Equation 
5.7.2 is a sufficient but not necessary condition.  

• When deadlines equal periods, these inequalities are equivalent and 
represent a necessary and sufficient condition for feasibility. 
 

𝑈 =  
𝑒𝑛

𝑝𝑛

𝑁
1 ≤ 𝑀  (EQ 5.7.1) 

𝐷 =  
𝑒𝑛

𝑑𝑛

𝑁
1 ≤ 𝑀  (EQ 5.7.2) 

 

• If the feasibility of a task system is not evident from the utilization bound of 
Equation 5.7.2, the only known manner in which feasibility can be shown is 
construction of a valid schedule (There is no optimal algorithm!!). 
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Multiprocessor Scheduling 
• The usual approach to schedule construction is the use of some systematic 

technique as a heuristic method, such as rate-monotonic scheduling, 
deadline-monotonic scheduling, earliest deadline scheduling, or some other 
technique. 
 

• Two possible methods for determining which tasks will be assigned to which 
processors.  

– In the non-partitioning method the 𝑀 processors are treated as a single 
resource, and the 𝑀 tasks with the highest priorities are always 
executing, with the priorities assigned by whatever heuristic method has 
been chosen. 

– In the partitioning method, tasks are partitioned into separate groups, 
possibly in some optimal or near optimal manner, and each group is then 
scheduled on a single processor. Tasks are assigned static priorities within 
a group using whatever heuristic method has been chosen. 
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Multiprocessor Scheduling 
• The question of just how much of the infinite periodic schedule 

need be constructed to prove feasibility, must be addressed. For 
task systems with static priorities. 
– For synchronous task systems the schedule is periodic with period 
𝑃 =  𝑙𝑐𝑚(𝑝1, 𝑝2, . . . , 𝑝𝑁), so that the schedule must be constructed 
through time 𝑡 =  𝑃. 

– For asynchronous task systems the schedule becomes periodic at time 
𝑟𝑚𝑎𝑥  +  𝑃, where 𝑟𝑚𝑎𝑥 is equal to the largest of the initial release times 
of all the tasks in the system. Thus, it is necessary to construct the 
schedule through time 𝑡 = 𝑟𝑚𝑎𝑥  +  2𝑃. 

• For synchronous task systems on one processor it is necessary to 
construct the schedule only through the longest period. The 
additional complexity of multiprocessor scheduling requires 
schedule construction over the longer base period 𝑃.  
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Multiprocessor Scheduling 
Example 5.7.1: Scheduling tasks on two processors by the partitioning and non-
partitioning methods. 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 4  

M = number of processors = 2 

 Period   Deadline  Execution Time 

 𝑝1 = 2   𝑑1 = 2   𝑒1 = 1 

 𝑝2 = 3   𝑑2 = 3   𝑒2 = 2 

 𝑝3 = 4   𝑑3 = 4   𝑒3 = 2 

 𝑝4 = 6   𝑑4 = 6   𝑒4 = 2 

The processor utilization is determined to be 

 𝑈 =
1

2
+
2

3
+
2

4
+
2

6
= 2.0 ≤ 2. 

Even though the task system is known to be feasible, on the basis that deadlines equal 
periods and that it satisfies this utilization bound, there is no known algorithm 
guaranteed to produce a valid schedule. Heuristic algorithms can be applied but with no 
guarantee of success.  
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Multiprocessor Scheduling 
If deadline-monotonic scheduling is selected as the heuristic algorithm, then either a 
partitioning or non-partitioning approach must be used.  

 

Partitioning Approach 

In constructing this schedule, the following partitioning was used. 

• Tasks 𝜏1 and 𝜏3 are assigned to processor 𝑃1 for execution. 

• Tasks 𝜏2 and 𝜏4 are assigned to processor 𝑃2 for execution. 

 

That is, tasks 𝜏1 and 𝜏3 are scheduled on processor 𝑃1 using deadline-monotonic 
scheduling  

independently of the scheduling of tasks 𝜏2 and 𝜏4 on processor 𝑃2, which is also 
accomplished using deadline-monotonic scheduling. 

 

(since deadlines equal periods in this example, deadline-monotonic and rate-monotonic 
priority assignments are equivalent)  
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Multiprocessor Scheduling 

• The general requirement of a valid schedule for a synchronous task system 
on multiple processors is that all tasks meet their deadlines in the interval 
𝑃 =  𝑙𝑐𝑚(2,3,4,6)  =  12, the base period of the task system.  

• Two synchronous task systems that are independently scheduled on the two 
processors, the single processor requirement for schedule validity can be 
used - schedule need only be constructed through the longest period - time 
𝑡 =  4 for processor 𝑃1, and time 𝑡 =  6 for processor 𝑃2. All tasks meet 
their first deadlines, and hence the schedule is valid. 
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Multiprocessor Scheduling 
Non-Partitioning Method 

 

 

 

 

 

 

• The combination of the two processors is considered a common pool of 
computational resources which are assigned to execute the tasks. Two 
highest priority tasks are executing at any particular time. 

• The deadline-monotonic priority assignment fails to produce a valid 
schedule. At time 𝑡 =  6, task 𝜏4 is released, but higher priority tasks 𝜏1, 𝜏2, 
and 𝜏3 consume all execution time until time 𝑡 =  11, at which point there is 
not enough time on either processor for 𝜏4 to complete by its deadline at 
time 𝑡 =  12. 
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Multiprocessor Scheduling 
Example 5.7.2: A second example of scheduling tasks on two processors. 

The second example of the scheduling of tasks on multiple processors using both the 
partitioning and non-partitioning methods involves the following task system. 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 4  

M = number of processors = 2 

 Period   Deadline  Execution Time 

 𝑝1 = 20   𝑑1 = 20  𝑒1 = 10 

 𝑝2 = 30   𝑑2 = 30  𝑒2 = 11 

 𝑝3 = 30   𝑑3 = 30  𝑒3 = 21 

 𝑝4 = 40   𝑑4 = 40  𝑒4 = 8 

The processor utilization is determined to be 

 𝑈 =
10

20
+
11

20
+
21

30
+
8

40
= 1.767 ≤ 2. 

Since deadlines = periods, this result is a necessary and sufficient condition for feasibility 
of the task system on two processors. Use Deadline-monotonic scheduling 
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Tasks 𝜏1 and 𝜏2 are assigned to processor 𝑃1 for execution. 

Tasks 𝜏3 and 𝜏4 are assigned to processor 𝑃2 for execution. 

The individual processor utilizations are 

𝑈1 =
10

20
+
11

20
= 0.867 ≤ 1. 

𝑈2 =
21

30
+
8

40
= 0.9 ≤ 1. 

 Schedule fails when task 𝜏2 misses its first deadline at time 𝑡 =  30 

Multiprocessor Scheduling 
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Multiprocessor Scheduling 

The deadline-monotonic scheduling algorithm allows ties to be arbitrarily 
broken, and in this case the tie is broken to produce the priority list 
(𝜏1, 𝜏2, 𝜏3, 𝜏4).  

The resulting schedule attempt is shown in the diagram of Figure 5.27, which 
shows task 𝜏3 missing its first deadline at time 𝑡 =  30.  

 

It would appear that deadline-monotonic scheduling used as a heuristic 
algorithm fails in this case. 
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Multiprocessor Scheduling 

If the priority list is changed to (𝜏1, 𝜏3, 𝜏2, 𝜏4), the valid schedule shown in Figure 

5.28 results.  

 

The fact that one priority list produces a valid schedule while the other does not 
merely points out that the deadline-monotonic priority assignment is not 
optimal in this situation. Will a dynamic priority algorithm work? 
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Multiprocessor Scheduling 
Example 5.7.3: Application of the earliest deadline method to the scheduling of tasks on 
two processors. 

The algorithm is applied in a manner that treats the multiple processors as a common 
pool of computational resources, i.e. the non-partitioning method is used. The task 
system for this example is specified below. 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3  

M = number of processors = 2 

 Period   Deadline  Execution Time 

 𝑝1 = 40   𝑑1 = 40  𝑒1 = 20 

 𝑝2 = 40   𝑑2 = 40  𝑒2 = 20 

 𝑝3 = 44   𝑑3 = 44  𝑒3 = 40 

The processor utilization is determined to be 

 𝑈 =
20

40
+
20

40
+
40

44
= 1.909 ≤ 2. 

The since deadlines = periods, this condition is both necessary and sufficient, and hence 
the task system is feasible. In an attempt to find a valid schedule, the earliest deadline 
priority assignment algorithm will be used.  
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Multiprocessor Scheduling 

The result is shown in Figure 5.29, where it can be seen that task 𝜏3 misses its 
first deadline.  

Thus, the earliest deadline priority assignment algorithm fails to produce a valid 
schedule, even though the task system is feasible. 
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A valid schedule for this task set is easily obtainable by assigning task 𝜏3 to 
processor 𝑃1 and tasks 𝜏1 and 𝜏2 to processor  𝑃2, as illustrated in the task 
schedule shown in Figure 5.30.  
 

If the earliest deadline priority assignment algorithm were optimal, it would 
have produced a valid schedule. 
 

Even if a task system is known to be feasible on 𝑀 processors, there is no known 
algorithm guaranteed to produce a valid schedule, i.e. there is no known optimal 
algorithm. 

 

Multiprocessor Scheduling 
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Least Slack Time Priority Algorithm 
Another dynamic priority assignment algorithm will be described: the least slack 
time priority assignment algorithm. This algorithm requires that task priorities 
be assigned in the following manner. 

 

At any instant of time, tasks are assigned priorities in increasing order of slack 
times. The slack time of a task 𝜏𝑛 at time 𝑡 is defined as 

 

𝑡𝑠 = 𝑡𝑑 − 𝑒 𝑡 − 𝑡    (EQ 5.7.3) 

 

where 𝑡𝑑 is the time of the impending deadline of task 𝜏𝑛and 𝑒 𝑡  is execution 
time remaining in order to complete task 𝜏𝑛· 

 

The slack time 𝑡𝑑 is thus the difference between the time available to meet the 
impending deadline and the execution time required to complete the task.  
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Least Slack Time Priority Algorithm 
The least slack time algorithm assigns tasks to processors using the concept of 
processor sharing introduced earlier.  
 

The least slack time algorithm is not an optimal algorithm for scheduling 
periodic tasks on multiple processors (remember there is no such polynomial 
time scheduling algorithm) but has some desirable features 

• If the earliest deadline algorithm produces a valid schedule, so also does the 
least slack time algorithm. 

• In the single processor case, the least slack time algorithm is optimal.  

• For multiple processors there are task systems for which the least slack time 
algorithm will produce a valid schedule when the earliest deadline algorithm 
will not. 

• The length of schedule construction required to determine if a schedule 
produced by the least slack time algorithm is valid is identical to that 
required of the earliest deadline algorithm or of a static priority algorithm. 
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Example 5.7.4: Least slack time scheduling. 

Processor sharing by definition treats the multiple processors as a common pool of 
computational resources, i.e. the non-partitioning method is used. The task system for 
this example is specified below. 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 = 3  

M = number of processors = 2 

 Period   Deadline  Execution Time 

 𝑝1 = 40   𝑑1 = 40  𝑒1 = 20 

 𝑝2 = 40   𝑑2 = 40  𝑒2 = 20 

 𝑝3 = 44   𝑑3 = 44  𝑒3 = 40 

The processor utilization is determined to be 

 𝑈 =
20

40
+
20

40
+
40

44
= 1.909 ≤ 2. 

The since deadlines = periods, this condition is both necessary and sufficient, and hence 
the task system is feasible.  

Least Slack Time Priority Algorithm 
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Least Slack Time Priority Algorithm 

Processor sharing schedule using least slack time scheduling 
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Least Slack Time Priority Algorithm 

Equivalent realizable schedule. 
 

The significance is that the least slack time algorithm produced a valid schedule 
for this task system when the earliest deadline algorithm failed to do so.  
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Periodic Task Scheduling Summary 
The scheduling of periodic tasks is an important component of the design of 
real-time systems software.  
 

Periodic task systems can be either preemptive or non-preemptive, and this 
characteristic has a profound effect on the ability to produce task schedules that 
meet periodic timing requirements.  

• In general, a task system can be characterized by specifying-for each task: a 
period, a deadline, and an execution time. If blocking is possible, then a 
worst case blocking time must also be specified. Execution times will 
normally vary from one release of a task to another, a phenomenon known 
as jitter. As a result, the execution times of tasks are often expressed as 
worst-case execution times. 

• Tasks can be scheduled statically using a cyclic executive approach. Static task 
schedules are predetermined through the use of task scheduling algorithms 
that employ the concept of task priority to determine how the various tasks 
are assigned to the processor(s) as a function of time.  
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Periodic Task Scheduling Summary 
• The resulting schedule exhibits periodic behavior at a period called the major 

cycle. Each major cycle is identical to the next. The major cycle is comprised 
of some number of minor cycles. The processing within different minor 
cycles is different, and the actual code executed within any given minor cycle 
is called a frame.  
 

• Synchronization requirements are met by dividing tasks into subtasks at the 
synchronization points, and then scheduling the subtasks in such a manner 
that the synchronization requirements are met. Cyclic executive systems are 
scheduled by periodic, timer-driven interrupts. 
 

• Tasks can be scheduled dynamically through use of a real-time multitasking 
executive (RTOS). Tasks are assigned priorities and are dynamically scheduled 
as the task system executes by the RTOS, which ensures that the highest 
priority pending task is always selected for execution.  
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Periodic Task Scheduling Summary 
• Schedulability analysis is conducted by assuming a fixed execution time for 

each of the tasks and applying appropriate analysis methods. This is 
necessary for ensuring that a given task system will meet all deadlines for all 
task releases. In many situations, the only known analysis method is 
schedule construction.  
 

• Synchronization requirements are met through the use of primitive 
operations, such as semaphores, provided by the real-time operating system. 
 

• In general, producing a static schedule for a cyclic executive system or 
equivalently, determining if a task system is schedulable using a specified 
priority assignment in a dynamically scheduled system can be a difficult 
problem.  
 

• Arbitrary task preemption increases scheduling flexibility. Arbitrary 
preemption is a requirement in those few situations in which efficient 
schedulability analysis is possible. 
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Periodic Task Scheduling Summary 
• Synchronous task systems with arbitrary task preemption exhibit a pseudo 

polynomial time algorithm for determining if a particular priority assignment 
will produce a valid schedule on a single processor. This algorithm consists of 
constructing the schedule through the longest task period-or of the 
analytical equivalent of schedule construction. 
 

• In many cases of practical importance, upper bounds on processor utilization 
relating to schedulability can be formulated and effectively used. Meeting 
the bound requirement is a sufficient but not necessary condition of 
schedulability for a task system. 
 

• In many situations of practical importance, the only known algorithm for 
determining if a given task system is feasible or schedulable is to construct 
the schedule using a known optimal priority assignment. For scheduling on 
multiple processors there is no known optimal priority assignment.  
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Periodic Task Scheduling Summary 
 

• There are optimal priority assignments for some classes of task systems. An 
optimal priority assignment is a priority assignment that will produce a valid 
schedule if one exists. 

– The deadline-monotonic priority assignment is an optimal static priority 
assignment for synchronous task systems on one processor. 

– The rate-monotonic priority assignment is an optimal static priority 
assignment for synchronous task systems on one processor when 
deadlines equal periods. 

– The earliest deadline priority assignment is an optimal dynamic priority 
assignment for scheduling tasks, synchronous or asynchronous, on one 
processor. 

 

• Alternatively, priority assignments used in schedule construction for statically 
scheduled systems, or those assigned in order to analyze task behavior in a 
dynamically scheduled system, are used as heuristic approaches to the 
problem. 


