Password Recovery Using MPI and CUDA

David Apostal*, Kyle Foerster!, Amrita Chatterjee*, Travis Desell*
*Department of Computer Science, University of North Dakota
david.apostal @my.und.edu, amrita.chatterjee @my.und.edu, travis.desell@cs.und.edu
TDepamnent of Electrical Engineering, University of North Dakota
kyle.foerster @my.und.edu

Abstract—Using passwords to verify a user’s identity is the
most widely deployed method for electronic authentication.
When system administrators need to recover lost passwords
or test accounts for easily guessable passwords, it can require
millions of hash function and string comparison operations.
These operations can be computationally expensive but are easily
parallelizable because each password can be tested independently.
Therefore, using high performance computing (HPC) can greatly
reduce the time required to perform password recovery or
analysis. Due to the high level of fine-grained parallelism of
this type of problem, GPU computing using Compute Unified
Device Architecture (CUDA) can be used to further improve
performance. The scale of HPC can be further increased through
the use of multiple GPUs, but this requires communication
between the GPU devices and can reduce the overall performance
due to increased communications latency. In this work, a well
established HPC framework, MPI, was used to minimize the
amount of latency and handle the communication between the
devices. This allowed for a course-grained division of the problem
using MPI where each device applies a fine-grained division of
the problem using CUDA to perform the actual calculations.
This paper describes three dictionary-based password recovery
algorithms that use both Message Passing Interface (MPI) and
CUDA. In this approach the hashed values of known words
are computed and compared with hash values of unknown user
passwords. The algorithms differed in GPU memory utilization,
and how the data was divided and distributed among the MPI
nodes and GPU devices. A divided dictionary algorithm split the
dictionary of potential passwords over the GPUs and copied the
password database to each GPU. A divided password database
algorithm, split the password database and copied the poten-
tial passwords. A minimal memory algorithm split the password
database, and sequentially processed individual passwords on the
GPUs. The divided dictionary and the divided password database
algorithms performed well, resulting in a speedup of 17x and
12x over a single processor using 8 GPUs across 4 compute
nodes, respectively. Illustrating the cost of communication latency
between MPI nodes and GPUs, the minimal memory algorithm
performed significantly slower than a single CPU. The algorithms
are shown to scale well to multiple GPUs, so this password
recovery system could be used for much larger systems for larger
databases. In addition to recovering lost passwords, this work
could be used to help improve the security of computer systems
by identifying accounts with weak or common passwords. The
framework described may also be useful for other research that
needs to process large amounts of data with similar characteris-
tics using MPI and CUDA.

I. INTRODUCTION

Electronic authentication is the process of confirming that a
user identity presented to an information system. A widely
deployed method for confirming a user identity is based
on passwords. A person submits her userid and password

to a computer system. The computer system processes the
password with a hash function and compares the hash function
output with a hash value associated with that userid from a
password database. If the two hash values match, she is granted
access to the system. Millions of people follow this protocol
to confirm their identity multiple times each day.

The hash functions used to authenticate users are called
cryptographic hash functions. These functions read a string
of characters of any length, perform a hash operation on the
string, and then return an encoded, hashed value as a fixed-
length string. A good cryptographic hash function is one-way,
which means the original input string cannot be recovered
by reversing the function. This one-way characteristic has
led to passwords being stored as hashed values instead of
in their plain-text format; so even if the password database
is compromised, the plain-text passwords are still somewhat
secure.

One problem with password authentication is that some
passwords are weak; they contain little randomness from one
character to the next. When people create their own passwords,
it is natural for them to choose words that are easy to
remember. Passwords are sometimes based on familiar names,
common words, or are simple sequences like “12345.” Those
types of passwords are easily guessed by attackers.

A dictionary-based password recovery application [1]-[5]
performs a large number of hash and string comparison op-
erations. A password dictionary is filled with familiar names,
common words, and simple character sequences. With a large
dictionary or a large number of entries in a password database,
password recovery is computationally expensive. However,
these types of analysis have a high level of parallelism; testing
one word from the dictionary is independent of testing another.
This makes dictionary-based password recovery well suited
for a HPC environment, like MPI [6] or CUDA [7]. The
parallelism can be taken even further and implemented in a
hybrid MPI+CUDA environment, which allows for an initial
course-grained division of the problem using MPI and a fine-
grained division of the problem using CUDA.

In the realm of password recovery there are several ap-
proaches that have been deployed [1]-[4], [8]-[11], each with
their own advantages and disadvantages. These approaches are
discussed further in Section II.

In this paper we compare the memory usage and run
times for multiple password recovery algorithms. We designed
and implemented algorithms using an MPI+CUDA hybrid

approach to password recovery; with each algorithm based
around the dictionary attack method of password recovery.
This MPI+CUDA approach allows for the division of a large
dictionary or a password database between multiple MPI
nodes, which is then further divided among the GPUs of each
node. This allows for multiple GPUs to perform calculations at
the same time. An analysis of the three algorithms was done to
identify the different strengths and weaknesses with respect to
execution time and memory usage and help determine the most
efficient data distribution strategy for a hybrid MPI+CUDA
computing environment.

These password recovery algorithms have three high-level
steps:

I. Distribute the dictionary and user password data to MPI

nodes and GPU devices.

II. Calculate hash values for the dictionary words.

III. Compare the calculated hash values of dictionary words
with the hash values from a password database file.

This processing is similar to the general processing required
in some other fields of research:

I. Distribute the data.

II. Optionally transform the data.
III. Perform pair-wise operations on the independent data.

A similar hybrid approach to HPC may be useful in other
domains with large amounts of data.

Our algorithms are distinguished by how they distribute data
to the GPU devices. The algorithms are:

o A divided dictionary algorithm which divides the dic-
tionary among the MPI nodes. Each MPI node further
divides the dictionary among the available GPU devices.
The password database is copied to all GPU devices.

o A divided password database algorithm which divides the
password database among the MPI nodes. Each MPI node
divides its portion of the database among the available
GPU devices. The entire dictionary is copied to all GPU
devices.

o A minimal memory algorithm, similar to the divided
password database algorithm, where each GPU gets a
unique subset of the password database. However, instead
of loading the entire dictionary into each GPU’s memory,
the minimal memory algorithm ensures low memory
usage by processing a single dictionary word at a time.

Although each algorithm recovered the same number of
passwords, results from experiments showed distinct differ-
ences in program execution times and memory usage. Com-
pared to a single processor, using 8 GPUs across 4 compute
nodes, the divided dictionary algorithm was 17x faster, the
divided database algorithm was 12x faster and the minimal
memory algorithm was 7x slower. The divided dictionary and
divided password database algorithms were also shown to
scale well to multiple GPUs. The divided dictionary algorithm
used 98% more GPU memory on average than the minimal
memory algorithm. The divided password database algorithm
used 87% more GPU memory on average than the divided
dictionary algorithm.

These variations among the algorithms are further described
in the sections III and IV.

II. RELATED WORK

There has been significant research in the areas relating
password strength to system security, improving the per-
formance of password recovery systems, as well as high
performance distributed computing approaches to a variety of
problems including password recovery.

A. Passwords and System Security

One area of research focuses on improving the strength
of systems that use password-based authentication protocols.
System strength can be improved by understanding what
makes one password better than another password. Dell’ Amico
et al. measured password strength in terms of the search space
required for attackers to guess some of the passwords [2].
It has been shown that dictionary attacks are most effective
at discovering weak passwords; dictionary word mangling
is useful after the dictionary has been fully tested. Finally,
Markov-based techniques were most useful in breaking strong
passwords [2].

Another approach for improving system strength involves
employing policies appropriate to the operating environment.
Users in different environments face different threats and have
different security needs. The collection of policies used in a
small office may be very different from the policies used in
a security-conscious business or an environment with highly
classified government data. It is reasonable that password
complexity and password aging policies are different in these
environments. Teat ef al. analyzed each policy set’s resistance
to an attacker using different computing resources: a single
personal computer, a botnet, and cloud-based resources [12].
The effective security on each policy set was also compared
against the attacker’s cost of using each resource or how long
each resource would take to crack a password.

B. Serial Dictionary Recovery Systems

Some researchers have studied ways to improve the perfor-
mance of serial password recovery systems.

A larger dictionary generally increases the likelihood of re-
covering one or more passwords. However, this also increases
the number of hash and string compare operations to perform.
Weir et al. developed a system to generate dictionary word lists
based on the probability distribution of user passwords [1].
After analyzing an appropriate set of training passwords, the
system determines the probabilities of grammar production
rules and the probabilities of special characters and digit char-
acters. This approach allows one to generate dictionary words
based on the probabilities of observed patterns of passwords.
The result is a probability-based ordering of dictionary words
and word-mangling templates.

John the Ripper (JtR) is an open-source software package
designed to attack (or crack) passwords in a number of formats
such as MD5 and SHAI. It is a useful tool for recovering

forgotten passwords and for detecting weak passwords [5].
One attack mode JtR supports is dictionary attack.

Markov chains have been shown to perform well com-
pared to JtR and brute force exhaustive search techniques
for password recovery [10]. Markov chains can be further
improved using various optimization techniques described by
Marechal [10]. Though the results found that JtR was faster,
the Markov chain process is more successful in cracking
passwords. The Markov process runs for a specified time and
it can be easily distributed. But, JtR does not have a predefined
time limit and can run until all the passwords are recovered.

C. Course-Grained HPC

In the field of high performance computing there are
multiple tool kits available for use such as Message Passing
Interface (MPI) and OpenMP. This section describes work to
improve the performance of MPI on grid systems as well as
efforts to utilize course-grained HPC technologies in the area
of password recovery.

Foster et al. describe an implementation of high perfor-
mance computational grids in different domains [13]. MPICH-
G is a grid-enabled implementation of MPI. Several prob-
lems were encountered in the development of the MPICH-G.
For example, a user cannot have same user ids at the two
sites [13]. It is essential to develop grid-enabled tools in order
to eliminate the limitations. It is stated that MPICH-G can be
distributed broadly. Another grid-enabled MPI implementation
is constructed from MPICH and Globus. MPICH has been
implemented in a variety of platforms as the architecture of
MPICH features a layered design [13]. The interrelation of the
components of the Globus toolkit made this toolkit to be used
widely.

Performance of password recovery can also be improved
by increasing the number of processors used. Bernaschi et
al. used a loosely coupled architecture based on volunteer
computing to implement a dictionary attack against a private
key ring generated by GnuPG software [3]. The architecture
organizes heterogeneous volunteer nodes into levels. The first
level has a single “root” node. The second and third levels
are organized into working groups. Nodes in each level have
specific responsibilities.

Pellicer et al. used Berkeley Open Infrastructure for Net-
work Computing (BOINC) on a small test bed to search
possible five-character passwords hashed with the MD4 al-
gorithm [14]. They observed less than linear increases in per-
formance due to work unit scheduling and network overhead.

JtR has been integrated with Message Passing Interface
(MPI) [4] and with BOINC [9]. BOINC-based password
recovery application may be further improved through the use
of a task server to handle the distribution of work as further
described in Anderson et al. [15].

Sykes et al. used JtR and MPI to create two algorithms with
different goals [4]. In their first algorithm a single password to
be cracked is distributed to each MPI nodes and the dictionary
is carefully divided among the nodes so that each node is
equally likely to crack the password. The second algorithm

divides a large password database file among the MPI nodes.
If any node is underutilized the system can reallocate the
uncracked passwords.

D. Fine-Grained HPC

MPI and OpenMP provide an efficient way of coarsely
dividing work up between multiple computers, cores, or
threads where each individual unit performs calculations on
a subset of the data. On the other hand, CUDA is better
suited to a more fine-grained parallelism of the problem as
further demonstrated in Pennycook et al. [16], where multiple
versions of the LU benchmark are compared on multiple
architectures.

Hash function performance has also been the focus of some
research. Keccak-f[1600] is a finalist in the NIST SHA-3
competition. Cayrel et al. described results of implementing
a version of the Keccak-f[1600] hash function for GPU
devices [17]. The Keccak family of hash functions is based
on a sponge construction which consists of two phases: an
absorbing phase and a squeezing phase. The absorbing phase
reads a message to be hashed. The squeezing phase outputs the
hash value. The input phase of the Keccak function was found
to be largely a sequential process. This limited the number of
parallel threads that the Keccak function could use.

Cayrel et al. also described their results using an alternative
GPU implementation called leaf interleaving [17]. In leaf
interleaving GPU kernels are organized like leaves of a tree.
A message to be hashed is divided among the kernel leaves.
After a leaf hashes its portion of the message, the hash result
is passed to the leaf node’s parent node.

A table of precomputed hash values used for password
recovery is called a rainbow table. Brute force exhaustive
searches and the generation of rainbow tables are well-suited
for different types of HPC. This is explained further in
Gomez et al. [18] where a comparison between a sequential
version and three multiprocessing methods; threaded, MPI,
and CUDA, of both tasks were run using the MDS5, SHA-
1, and NTLM/MD4 hash algorithms. These results showed
that the Rainbow table generation performed the best in an
MPI environment, while the brute force attack performed
the best in the CUDA version. CUDA implementation of
password recovery with Rainbow tables is further described
by Graves [8].

E. Hybrid HPC

Course- and fine-grained HPC have normally been used
independent of each other. However, they may be combined
as a hybrid framework of parallelism. A course division of
the problem is done at the CPU level, using MPI or OpenMP.
This level divides the data or calculations into smaller subsets,
handling distribution of data and gathering of results. At
the next level GPUs can then apply a fine-grained type of
parallelism to the smaller subset of the problem [19]. This
type of abstract parallelism has lead to implementations of
MPI+CUDA hybrid programs becoming more common as
demonstrated by an analysis of the performance difference

between an OpenMP and MPI+CUDA program to perform
two-layer shallow water systems numerical modeling using
a first order Roe type finite volume scheme [11], which
demonstrated the advantages to using a MPI+CUDA hybrid
approach over an OpenMP approach and a discontinuous
Galerkin Time Domain analysis performed in Dosopoulos et
al. [20].

One important factor to take into account when attempting
to create a parallel version of a problem or simulation is mak-
ing sure the underlying calculations or algorithms used have
a high degree of parallelism as demonstrated in Karunadasa
et al. [21] using GPU clusters. The need to use a highly
parallel algorithm or calculation is further demonstrated by
the comparison between the classic Roe mathematical model
and an improved Roe scheme, IR-Roe, as described further
by Asuncion ef al. [11] using MPI and GPUs. The changes
made to their underlying model resulted in significant speed-
ups when compared to the old model. This comparison demon-
strated that when porting a problem to an HPC solution it is
necessary to take the hardware or tool kits performance limits
into consideration. Modifications to the mathematical model or
algorithm can result in even larger gains after implementation
on an HPC framework, as demonstrated between the classic
Roe model and the improved IR-Roe model.

III. APPROACH

In order to determine the most efficient use of a hybrid
MPI+CUDA system for password recovery, three different
algorithms were developed. The algorithms are similar in that
they are based on a dictionary approach to password recovery.
In the dictionary approach hash values for a list of words are
computed. Those computed hash values are then compared
against the hash values stored in a password database. If the
computed hash value for a dictionary word matches the stored
hash value for an account in the database, then the dictionary
word is the password for the account.

The algorithms differ primarily in how the dictionary and
password database are distributed among the GPU devices.
The remainder of this section will describe the hash function
used, our dictionary and password database data, and the three
algorithms.

A. Hash Function

The cryptographic hash function used in this project is a
version of SHA-1 implemented in C and obtained under a
Freeware Public License [22]. For the CPU version of the
program, a driver program was written to implement and use
the SHA-1 C code obtained from Jones et al. [22].

In the MPI+CUDA version of the password recovery pro-
gram, the SHA-1 C code was ported over as device functions
to allow for their usage within the CUDA kernel used to
generate the dictionary word hashes.

B. Input Data

The input data for each algorithm consists of a dictionary of
potential passwords and a password database. The dictionary

MPI Node 0

GPU n-1 H

Fig. 1. Divided Dictionary Algorithm. The dictionary of potential passwords
is divided among the MPI nodes. Each MPI node subdivides its words among
its available GPU nodes. The same password database is loaded onto each
GPU.

is comprised of word lists from multiple online sources.
Some word lists are purported to contain actual passwords
aggregated from postings on various Internet forums. One
word list is simply a list of English words; one is a list of
German words; and one is a list of US cities.

The password database loosely resembles an
/etc/passwd file on some Unix systems. Each record,
representing one account, has two fields. The first field holds
the account user name. The user names in the file are unique.
The second field stores the hash value of the user’s password.
The hash values were set such that a known number of
accounts had passwords known to be in the dictionary. The
remaining accounts had passwords known not to exist in the
dictionary. This aided in verifying the correctness of each
algorithm.

C. Algorithms

Our hypothesis was that each algorithm will require dif-
ferent amounts of memory and processing time due to their
differences in how they divided the dictionary and password
database data. The scalability of the different algorithms
was also of interest. Section IV examines their scalability,
performance and memory usage in detail.

1) Divided Dictionary Algorithm: The divided dictionary
algorithm (shown in Figure 1) divides the larger dictionary
file between the MPI nodes which then further divide the
dictionary words between the GPUs on each MPI node.
Each GPU has a different portion of the dictionary. The
full password database file is then loaded onto each GPU.
A kernel function is repeatedly called for each of the user
accounts to test for matches between the password database
hash and the dictionary word hashes. Any matches represent
the recovered password for the user account. The main steps
of this algorithm are described below.

I. Evenly divide the dictionary words among the MPI
nodes. Each MPI node further divides its words among
its available GPU devices.

II. The GPU devices calculate hash values for each of its
dictionary words and stores them in global memory.

III. The contents of the password database are copied to each
GPU device. Each GPU has the same account data.

MPI Node 0

Dictionary PWDB 0 Dictiona

GPU O GPUn-1 -

Fig. 2. Divided Password Database Algorithm. The password database is
divided among the MPI nodes. Each MPI node subdivides that user account
data among its available GPU devices. The entire dictionary is loaded onto
each GPU.

IV. Finally, the GPU tests for matches between the calculated
hash value of each dictionary word with the stored hash
value from the password database.

2) Divided Password Database Algorithm: The divided
password database algorithm (shown in Figure 2) evenly
divides the password database file between the MPI nodes
which then further divide the user account data between the
GPUs on each MPI node. The full dictionary file is then
loaded onto each GPU and their respective hash values are
calculated. A kernel function is then repeatedly called for
each of the user accounts to test for matches between the
password database hash value and the dictionary word hashes.
Any matches represent the recovered password for a given
user account as outlined below.

I. Distribute all of the dictionary words to each MPI node

and its available GPU devices.

II. The GPU devices calculate hash values for each dictio-
nary word.

III. Evenly divide the contents of the password database
among each MPI node. Each MPI node then divides its
account data among the GPU devices.

IV. Finally, the GPU tests for matches between the calculated
hash value of each dictionary word and the stored hash
value from the password database.

3) Minimal Memory Algorithm: The minimal memory al-
gorithm (shown in Figure 3) repeatedly calculates the hash
value for a dictionary word and then tests for a match in the
password database. The intent of this algorithm is to be a
low memory solution; it differs greatly when compared to the
other algorithms. The minimal memory algorithm divides the
password database file between the MPI nodes which then
further divide the password database between the GPUs on
each MPI node. The choice to divide the password database
between the MPI nodes instead of the dictionary file is
based on the assumption that the password database will be
significantly smaller than the dictionary file. The algorithm
processes the data as outlined below.

I. Evenly divide the password database among the MPI
nodes. Each MPI node further divides its user accounts
among the GPU devices.

II. For each dictionary word,

Dictionary

Iteration) —— Apple

Cherry
Mango
Orange

Iteration M == Zebra

GPUO GPUn-1 |

Fig. 3. Minimal Memory Algorithm. The password database is divided evenly
among the MPI nodes and then subdivided among the GPU devices. One by
one, a single word from the dictionary is loaded onto the GPUs, hashed, and
compared with the user account hash values.

a. Load and distributed the word among the GPUs.

b. Calculate the word’s hash value.

c. Compare the calculated hash value against the loaded
user account hash values.

IV. RESULTS

The MPI+CUDA password recovery program was imple-
mented and tested on a four-node cluster. The MPI imple-
mentation was MPICH2 version 1.4.1p1. Each MPI node was
an x2200 compute node with dual 64-bit, 4-core processors.
Each cluster node had two Tesla C1060 GPUs and CUDA 3.0.

Two observations effected the design and results. First, the
dictionaries used for the testing of the password recovery
program are expected to be relatively large, and the division
of the dictionaries would remain the same between executions
of the program with the same number of GPUs. Second, if
MPI is used to handle the loading and distribution of the
dictionaries between the nodes, it incurs a large amount of
network communication latency and causes the program to
take a considerably larger amount of time to run. To address
this issue, the dictionaries were divided and distributed to the
MPI nodes using a synchronous file system. This allowed each
individual MPI node to load its associated file and remove the
potential network latency associated with distributing data.

Program options specify the number of MPI nodes to use
and which data distribution algorithm to execute. There is no
option to specify the number of GPUs to use; the program
uses as many GPUs as are available on each MPI node. MPI
handles the initialization and communication of the MPI nodes
as well as any file IO associated with the loading of the
dictionary and password database files. The MPI thread on
each node also handles the initialization and creation of the
GPU threads because CUDA 3.0 requires each GPU to have

its own controlling thread to handle initialization, memory
operations, and kernel calls. The threads are synchronized
to allow for the loading, distribution, and retrieval of data
between the MPI thread and GPU threads.

We analyzed each algorithm in terms of scalability, elapsed
time and memory usage. Elapsed times are reported for the
total execution time for each algorithm as well as average
times the GPUs to perform individual steps. The individual
steps are: loading the data into GPU memory, computing hash
values for the dictionary words, and comparing hash values for
dictionary words with hash values in the password database
file. Average GPU memory usage is also reported.

A. Elapsed Time

In terms of total execution time, the minimal memory
algorithm was significantly slower than the other algorithms.
The minimal memory algorithm loads a single dictionary
word, computes its hash value, and compares that hash value
with each value in a subset of the password database. The slow
performance is due to repeated CUDA memory operations.
Table I shows results of the minimal memory algorithm for
different numbers of GPUs. The columns represent the times in
seconds to load the password database, processing every word
in the entire dictionary, and the total runtime of the program.
Processing a word requires loading a word in the GPU,
calculating the hash value for that word, comparing the hash
value with the hash values in the password database. These
tests used a dictionary of 2,151,220 words and a password
database of 1,000 accounts.

TABLE I
MINIMAL MEMORY ALGORITHM ELAPSED TIMES (SEC)

GPUs Load PWDB Process Dictionary Total
1 0.000139 683.498 684.794
2 0.000186 717.484 718.952
3 0.000153 664.074 665.472
4 0.000155 662.807 664.306
5 0.000618 659.600 661.015
6 0.000164 660.300 661.725
7 0.000178 656.557 659.335
8 0.000107 653.205 656.291

Metrics for the divided dictionary and divided password
database algorithms are shown in Table II and Table III
respectively. The tables show the times in seconds to load
the dictionary, generate hash values for each dictionary word,
compare the dictionary word hash values with hash values in
the password database, and the total runtime of the program.
These tests used a dictionary of 8,604,880 words and a pass-
word database of 1000 accounts. For the divided dictionary
algorithm the dictionary data is divided among the MPI nodes.
Each MPI node then divides the data among the number
of available GPU devices installed on the MPI node. In the
divided password database algorithm the entire dictionary is
loaded into the memory of each GPU. In tests with three, five,
and seven GPU devices one MPI node has only one GPU
device while the other MPI nodes have two GPU devices. In

these special cases one GPU device performs more work than
the other GPUs.

TABLE 11
DIVIDED DICTIONARY ALGORITHM ELAPSED TIMES (SEC)

GPUs Load Generate Compare Total
1 1.435 0.584 23.712 27.037
2 1.421 0.321 12.345 15.406
3 0.701 0.157 6.178 14.392
4 0.699 0.156 6.625 8.869
5 0.466 0.107 4.124 10.120
[§ 0.468 0.105 3.983 4.556
7 0.353 0.077 3.223 8.349
8 0.353 0.075 3.248 5.191

TABLE III

DI1VIDED PASSWORD DATABASE ALGORITHM ELAPSED TIMES (SEC)

GPUs Load Generate Compare Total
1 1.435 0.581 23.682 27.025
2 1.882 0.579 11.808 15.714
3 1.897 0.584 5.897 15.152
4 1.927 0.589 6.161 10.050
5 1.908 0.590 3.925 11.239
6 1.887 0.584 3.962 8.061
7 1.880 0.587 3.134 9.868
8 1.930 0.581 2.813 7.456

Figures show side-by-side comparisons of the divided dic-
tionary and divided password database algorithms for each
metric. Figure 4 shows the total program execution time
when each algorithm was run with different numbers of GPU
devices. This is the elapsed real time between start and finish
times as reported by the unix time command. Results for tests
with three, five, and seven GPUs show the effect of data not
divided evenly among the GPU devices; one GPU processed
twice as much data as the others. In this test, the divided
dictionary algorithm performs slightly better than the divided
password database algorithm due to the decreased number of
hash operations and comparisons. This is largely due to the
fact that the dictionary is considerably larger than the password
database.

Figure 5 shows the average times to load the dictionary for
different numbers of GPU devices. The times for the divided
dictionary algorithm trend downward because the number of
dictionary words processed by each GPU decreases. For the
divided password database algorithm the load times for two or
more GPU devices is higher than the load time for one GPU.
This is because an extra string copy operation is required for
each dictionary word for the second GPU device on an MPI
node.

The times to generate hash values for each dictionary word
using a SHA-1 hash function are shown in Figure 6. The
times for the divided dictionary algorithm decrease because
the dictionary is divided among each GPU device. The times
for the divided password database algorithm are consistent
because each GPU has to calculate hash values for the same
number of dictionary words.

Time (s)

Time (s)

Time (s)

Execution Time of Program

30
25
20 & Divided
Dictionary
Algorithm
s - Divided
Password
10 Database
Algorithm
5
0
0 1 2 3 4 5 6 7 8 9
Number of GPUs
Fig. 4. Execution Time of Program
Dictionary Load Time
25
2
& Divided
15 Dictionary
Algorithm
~¢-Divided
1 Password
Database
Algorithm
0.5
0
o 1 2 3 4 5 6 7 8 9
Number of GPUs
Fig. 5. Average GPU Dictionary Load Time
Generation of Dictionary Hashes
0.7
0.6
05 & Divided
Dictionary
0.4 Algorithm
-¢-Divided
03 Password
Database
0.2 Algorithm
0.1
0

0 1 2 3 4 5 6 7 8 9
Number of GPUs

Fig. 6. Average GPU Time to Generate Dictionary Hashes

Comparison of Hashes

25
20
& Divided
15 Dictionary
w Algorithm
g -0~ Divided
= 10 Password
Database
Algorithm
5
0

0 1 2 3 4 5 6 7 8 9
Number of GPUs

Fig. 7. Average GPU Time to Compare Hashes

Figure 7 shows the times to compare hash values of dictio-
nary words with hash values found in the password database
file.

When comparing the results for the divided dictionary and
divided password database algorithms, it is clear that the
increased execution time for the divided password database
algorithm is due to the increased load and hash generation
time of the dictionary due to the dictionaries increased size.

A serial CPU version of the password recovery program was
also implemented. This program loads the entire dictionary
into memory and then generates their associated hashes and
stores them in memory. After the dictionary has been loaded
into memory, the program loads the password database one
account at a time and compares its hash value against the
dictionary hashes, if a match is found the resulting recovered
password is displayed.

The serial version of the password recovery program took
89.758 seconds to execute with a dictionary load time of
2.043 seconds, hash generation time of 5.856 seconds, and
comparison time of 78.570 seconds. The minimal memory
algorithm was 7x slower than the serial version. However, the
divided dictionary and divided password database algorithms
were 17x and 12x faster than the serial password recovery
program. These results demonstrate that through the use of
HPC computing using GPUs, the execution time of a password
recovery program using a dictionary-based attack can be
significantly reduced.

B. Memory Usage

In the minimal memory algorithm the amount of memory
used by a GPU is approximately 1.048MB. This is because
in this algorithm a single dictionary word is hashed, and the
hash value is compared with those entries from the password
database previously loaded into the GPU memory. Also, there
is no need to store the hashed value after the comparisons.

The differences in memory required by the divided dictio-
nary and divided password database algorithms are shown in
Figure 8. Memory usage for the divided dictionary algorithm

Average GPU Memory Usage

600
500
€ 400 = Divided
g Dictionary
= Algorithm
& 300 -~ Divided
> Password
g 200 Database
% Algorithm
100
0
0 1 2 3 4 5 6 7 8 9

Number of GPUs

Fig. 8. Average Memory Usage Per GPU

decreases because the dictionary is divided among the avail-
able GPU devices. In the divided dictionary algorithm each
GPU calculates and stores hash values for each dictionary
word before testing for matches in the password database.
Therefore, memory usage required by a GPU is twice the
number of dictionary words distributed to the GPU.

The memory usage for the divided password database algo-
rithm appears to be equal for all GPUs in Figure 8. However,
Table IV shows a small decrease in memory usage as the
number of GPUs increases. The reason that memory usage
for the divided dictionary algorithm decreases at a greater rate
than the divided password database algorithm is because the
dictionary is larger than the password database.

TABLE IV
MEMORY USAGE: DIVIDED DICTIONARY VS DIVIDED PASSWORD
DATABASE
GPUs Divided Dictionary Divided PWDB

1 501.219 501.219

2 251.678 501.204

3 168.498 501.199

4 126.907 501.197

5 101.952 501.195

6 85.317 501.194

7 73.434 501.193

8 64.522 501.193

V. FUTURE WORK

There are a number of areas where the current MPI+CUDA
implementation for password recovery could be improved or
expanded.

In another computing environment GPU devices may not
be able to load all of the data at one time. This could be
the result of fewer GPUs per MPI node or larger dictionary
or password database files. The implementation should be
modified so that it can process subsets of the data and still
complete the pair-wise analysis of dictionary and password
database entries without operator intervention.

Limitations in CUDA 3.0 affected the design and implemen-
tation of the password recovery application. For example, each
GPU requires its own controlling thread, and memory context
is lost when the controlling thread exits. Using newer versions
of CUDA make it easier to create multiple GPU/threaded
programs. Also, a new CUDA feature called GPUDirect [23]
may improve performance of MPI send and receive functions.
With this improved MPI performance, the password recovery
application could use MPI instead of the file system to
distribute data to each MPI node.

It would also be possible to expand on the current program
by creating an implementation that further divides the work
between the idle CPU processor cores and the GPUs. This
would require addressing two issues. Because the GPUs run
faster than the CPU cores, the initial division of data would
reflect the difference in relative performance. Also, it may be
necessary to perform dynamic load balancing if any of the
processing units are being underutilized.

The implementation should be evaluated against the needs
of other problem or simulation domains that have a high degree
of parallelism. This would help to identify design decisions
specific to password recovery and allow modifications to make
a more general framework. Other fields may require processing
of even larger data sets. This could help to demonstrate the
extensibility of the framework by requiring more MPI nodes
and more GPU devices per node.

Obtaining and implementing an actual user password
database would allow for a better and more realistic analysis
of the three data distribution strategies that were tested and
could be further improved by implementing a larger dictionary
specifically tailored towards password recovery; this database
would not include random words, but would include com-
monly used phrases, sequences of characters, and passwords
to further improve the success rate when recovering passwords
from an actual user password database.

It would be interesting to develop MPI+CUDA implemen-
tations of other password recovery methods such as Markov
chains or rainbow tables. Do these methods show similar
scalability and performance gains? This would also allow for
further comparisons and analysis of the dictionary approach
with different password recovery methods.

The current implementation of the dictionary attack method
used by the each algorithm performs sequential string com-
parisons for each thread on the GPU; this could be further
improved by implementing a parallel version of string com-
pares on the GPU to allow for faster string comparisons.

The strategies for data distribution could also be combined
into a single approach that takes the dictionary and user
password databases into account and uses the most appropriate
algorithm to perform the calculations. This would allow the
program to perform the password recovery using the algorithm
with the best performance for a given dictionary and user
password database size.

To help prevent wasted computation time, the program
could be modified to stop once a match is found. This would
prevent the program from waiting for all of the MPI nodes to

finish performing hash comparisons for all of the dictionary
words and instead stop when a match is found. This type of
modification would be implemented on the MPI side of the
program and would allow for each MPI node to indicate its
current status and weather or not it has found a match. If a
node has found a match all of the nodes could stop execution
and return their results.

VI. CONCLUSION

Password-based authentication systems and their problems
will most likely be the most common identity verification
system for quite some time; and people will continue to use
weak passwords like “12345” as long as they don’t understand
their important role in the security of computer systems.

This project demonstrates that significant scalability and
performance gains are possible with a hybrid HPC approach
to password recovery using MPI+CUDA. These tools can be
easy to use and will likely be adopted by both sides in the
arms race between system administrators and hackers.

Of the three algorithms analyzed the divided dictionary
algorithm was the best approach for distributing data to each
GPU. Dividing the larger dictionary, rather than the smaller
password database among the GPUs ensured performance
gains as the number of GPUs increased.

The divided password database algorithm stayed close with
the divided dictionary algorithm in overall program execution
time. However, dividing the smaller password database among
the GPUs resulted in considerable duplication of processing by
each GPU. Each GPU loaded the same dictionary, computing
and storing hash values for the same words. With larger
datasets or more GPUs this approach would fall further behind
the execution time of the divided dictionary algorithm.

Creating programs with lower memory requirements is
often laudable goal. However, the minimal memory algorithm
actually worked against the GPU processing power resulting
in poor execution times. This is demonstrated by the fact that
a serial version of the password recovery program performed
better in all metrics than the minimal memory algorithm.

In general, this work shows that MPI and CUDA can be
combined to develop an efficient password recovery system
that can scale to multiple compute nodes with multiple GPUs.
Further, this work opens up many avenues for improving
performance and scalability for large scale hybrid computing
systems, as well as utilizing and testing modern improvements
in GPU technology.

REFERENCES

[1] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Proceedings of
the 30th IEEE Symposium on Security and Privacy, 2009, pp. 391-405.

[2] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: An
empirical analysis,” in 29th IEEE Conference on Computer Communi-
cations (INFOCOM 2010), 2010, pp. 1-9.

[3] M. Bernaschi, M. Bisson, E. Gabrielli, and S. Tacconi, “An architecture
for distributed dictionary attacks to cryptosystems,” Journal of Comput-
ers, vol. 4, pp. 378-386, 2009.

[4] E. R. Sykes, M. Lin, and W. Skoczen, “Mpi enhancements in john the
ripper,” Journal of Physics: Conference Series, vol. 256, no. 1, 2010.

[5]
[6]
[7]
[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

A. Peslyak. John the ripper. [Online]. Available:
http://www.openwall.com/john/

MPICH. [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpich2/

NVIDIA Corporation. CUDA. [Online]. Available:

http://www.nvidia.com/object/cuda_home_new.html

R. Graves, 1. S. U. Electrical, and C. Engineering, High performance
password cracking by implementing rainbow tables on nVidia graphics
cards (IseCrack). lowa State University, 2008. [Online]. Available:
http://books.google.com/books?id=unIx0fWdMUgC

J. R. Crumpacker, “Distributed password cracking,” Master’s thesis,
Naval Postgraduate School, December 2009.

S. Marechal, “Advances in password cracking,” Journal in Computer
Virology, vol. 4, pp. 73-81, 2008.

M. de la Asuncin, J. M. Mantas, M. J. Castro, and E. Fernndez-Nieto,
“An mpi-cuda implementation of an improved roe method for two-layer
shallow water systems,” Journal of Parallel and Distributed Comput.
(2011), 2011.

C. Teat and S. Peltsverger, “The security of cryptographic hashes,” in
Proceedings of the 49th Annual Southeast Regional Conference, ser.
ACM-SE ’11, 2011, pp. 103-108.

I. Foster and N. T. Karonis, “A grid-enabled MPI: message passing
in heterogeneous distributed computing systems,” in Supercomputing
'98: Proceedings of the 1998 ACM/IEEE conference on Supercomputing
(CDROM). Washington, DC, USA: IEEE Computer Society, 1998, pp.
1-11.

S. Pellicer, Y. Pan, and M. Guo, “Distributed md4 password hashing
with grid computing package boinc,” in GCC, ser. Lecture Notes in
Computer Science, H. Jin, Y. Pan, N. Xiao, and J. Sun, Eds., vol. 3251.
Springer, 2004, pp. 679-686.

D. P. Anderson, E. Korpela, and R. Walton, “High-performance task
distribution for volunteer computing,” in Proceedings of the First Inter-
national Conference on e-Science and Grid Computing, ser. e-Science
’05, Dec. 2005, pp. 196-203.

S. Pennycook, S. Hammond, S. Jarvis, and G. Mudalige, “Performance
analysis of a hybrid mpi/cuda implementation of the nas-lu benchmark,”
SIGMETRICS Performance Evaluation Review (2011), pp. 23-29, 2011.
P.-L. Cayrel, G. Hoffmann, and M. Schneider, “Gpu implementation of
the keccak hash function family,” in Information Security and Assurance,
ser. Communications in Computer and Information Science, T.-h. Kim,
H. Adeli, R. J. Robles, and M. Balitanas, Eds. Springer Berlin
Heidelberg, 2011, vol. 200, pp. 33—42.

J. Gomez, F. Montoya, R. Benedicto, A. Jimenez, C. Gil, and A. Al-
cayde, “Cryptanalysis of hash functions using advanced multiprocess-
ing,” Distributed Computing and Artificial Intelligence: 7th International
Symposium (2010), vol. 79, pp. 221-228, 2010.

C.-T. Yang, C.-L. Huang, and C.-F. Lin, “Hybrid cuda, openmp, and
mpi parallel programming on multicore gpu clusters,” Computer Physics
Communications (2011), vol. 182, pp. 266-269, 2011.

S. Dosopoulos, J. D. Gardiner, and J.-F. Lee, “An mpi/gpu parallelization
of an interior penalty discontinuous galerkin time domain method for
maxwells equations,” Radio Science (2011), vol. 46, 2011.

N. P. Karunadasa and D. N. Ranasinghe, “On the comparative perfor-
mance of parallel algorithms on small gpu/cuda clusters,” International
Conference on High Performance Computing (2009), 2009.

P. E. Jones. SHA1-c. [Online]. Available:
http://www.packetizer.com/security/shal/
NVIDIA Corporation. GPUDirect. [Online]. Available:

http://developer.nvidia.com/gpudirect

