SALSA Lite: A Hash-Based Actor Runtime for
Efficient Local Concurrency

Travis Desell! and Carlos A. Varela?

! Department of Computer Science, University of North Dakota
tdesell@cs.und.edu
2 Department of Computer Science, Rensselaer Polytechnic Institute
cvarela@cs.rpi.edu

Abstract. As modern computer processors continue becoming more
parallel, the actor model plays an increasingly important role in help-
ing develop correct concurrent systems. In this paper, we consider ef-
ficient runtime strategies for non-distributed actor programming lan-
guages. While the focus is on a non-distributed implementation, it serves
as a platform for a future efficient distributed implementation. Actors ex-
tend the object model by combining state and behavior with a thread of
control, which can significantly simplify concurrent programming. Fur-
ther, with asynchronous communication, no shared memory, and the fact
an actor only processes one message at a time, it is possible to easily im-
plement transparent distributed message passing and actor mobility. This
paper discusses SALSA Lite, a completely re-designed actor runtime sys-
tem engineered to maximize performance. The new runtime consists of
a highly optimized core for lightweight actor creation, message passing,
and message processing, which is used to implement more advanced co-
ordination constructs. This new runtime is novel in two ways. First, by
default the runtime automatically maps the lightweight actors to threads,
allowing the number of threads used by a program to be specified at run-
time transparently, without any changes to the code. Further, language
constructs allow programmers to have first class control over how actors
are mapped to threads (creating new threads if needed). Second, the
runtime directly maps actor garbage collection to object garbage collec-
tion, allowing non-distributed SALSA programs to use Java’s garbage
collection “for free”. This runtime is shown to have comparable or bet-
ter performance for basic actor constructs (message passing and actor
creation) than other popular actor languages: Erlang, Scala, and Kilim.

Keywords: Concurrent Programming, Actor Model, Actor Languages, Fair-
ness, State Encapsulation, SALSA, Erlang, Kilim, Scala

1 Introduction

Actors model concurrency in open distributed systems [1,2]. They are inde-
pendent, concurrent entities that communicate by exchanging messages. Each

actor encapsulates a state with a logical thread of control which manipulates
it. Communication between actors is purely asynchronous. The actor model as-
sumes guaranteed message delivery and fair scheduling of computation. Actors
only process information in reaction to messages. While processing a message,
an actor can carry out any of three basic operations: alter its state, create new
actors, or send messages to other actors (see Figure 1). Actors are therefore
inherently independent, concurrent and autonomous which enables efficiency in
parallel execution [3] and facilitates mobility [4, 5].

This paper describes the development of a new runtime for SALSA called
SALSA Lite. This runtime was designed to perform the basics of actor based
computation, simple message passing and actor creation, as efficiently as possible
(see Section 4). Then the rest of SALSA’s advanced message passing constructs,
remote message passing, remote actor creation, and actor mobility are built
using this optimized core. The strategy is to separate the overhead of distributed
communication, universal naming, mobile computation, and distributed garbage
collection, so that SALSA programs that run locally on multi-core processors do
not have to pay the performance price for distribution and mobility.

Because encapsulation and fairness are guaranteed by the language seman-
tics, it was possible to create a highly efficient and simple runtime to execute
lightweight actors. The runtime itself is also based on the actor model, and is
similar in structure to E’s vats [7, 8]. It assigns lightweight actors to stages, each
of which have a single thread and combined mailbox for every assigned actor.
A stage processes messages from its mailbox sequentially on its assigned actors
using their message handlers, and actors send messages to other actors by plac-
ing them in the target actor’s stage. In this runtime, the stage is essentially a
heavyweight actor, and lightweight actors can be implemented as simple objects.

Using this approach, it is also possible to provide first class stage support,
allowing SALSA developers to specify what stage actors are assigned to, and
dynamically create new stages as needed. Furthermore, the stage runtime maps
actor garbage collection to object garbage collection, allowing the use of Java’s
garbage collection without additional overhead for non-distributed non-mobile
SALSA programs. Results show that for benchmarks testing actor creation and
message passing, SALSA Lite is two times faster than Kilim, two to ten times
faster than Scala, and over an order of magnitude faster than Erlang. Addition-
ally, SALSA Lite does this while providing actor garbage collection and ensuring
state encapsulation, in contrast to Kilim and Scala.

2 Related Actor Languages and Frameworks

This section describes three commonly used languages with actor semantics:
Erlang, Kilim, and Scala.

2.1 Erlang

Erlang is a functional programming language which allows concurrency via pro-
cesses that use the actor model [9]. Erlang’s scheduler accomplishes fairness by

Actor

b il ik |
wodd s}
- 1 il 7

¢ TR P W 1

Mailbox

Fig. 1. Actors are reactive entities. In response to a message, an actor can (1) change its
internal state, (2) create new actors, and/or (3) send messages to other actors (image
from [6]).

counting the number of reductions, or function calls used by a process. When a
process has made 1,000 reductions, it is paused and Erlang starts execution of
a different process. This allows Erlang to scale to a large number of processes
using a fixed number of actual processes without violating fairness.

The state of a process in Erlang can only be updated as the result of message
passing. This coupled with safe message passing ensures state encapsulation. Safe
message passing in Erlang is guaranteed by single assignment. Single assignment
enforces that a value can be bound to a variable exactly once. As a consequence,
all variables are immutable after their initial assignment. Since there is no way to
directly update the state of other processes and variables passed in messages are
immutable, there is no way to share mutable memory between Erlang processes.

2.2 Kilim

Kilim is an actor based message passing framework for Java. It uses byte-code
transformation to convert specified Java objects into actors. Kilim actors use
ultra-lightweight threads as well as safe, zero-copy message passing based on a
type system [10]. Kilim’s weaver transforms methods with a @pausable qualifier
into continuation message passing. The resulting actor threads and continuation
messages enable very fast context-switching via lightweight threads. Kilim uses
a linear ownership type system to ensure that a message can have at most one
owner at any time, which helps developers guarantee safe message passing.

However, Kilim requires users to explicitly copy Java objects when they are
sent in messages, so it violates state encapsulation as actors can pass references
to Java objects and access the same memory concurrently. Kilim actors can
also be constructed with references to shared objects and access the mailbox
and state of other actors directly. While having a reference to another actors
mailbox allows actors to “send” messages, it also lets an actor “steal” messages
from other actors’ mailboxes. It also does not guarantee fair scheduling, as syn-
chronous object method invocation and infinite loops may block an actor and
the thread executing that and potentially other actors indefinitely, preventing it
from processing further messages.

2.3 Scala

Scala provides a library scala.actors, heavily inspired by Erlang, to support
the actor model. It supports synchronous and asynchronous message passing and
fair scheduling by unifying threads and events [11]. However, it allows shared
memory and synchronous execution of methods on other actors. While, this can
be desirable in some programs, it can also result in a violation of actor semantics
as well as data inconsistencies. Similarly, objects passed within messages may
be accessed by multiple actors simultaneously leading to a loss of state encap-
sulation. Allowing synchronous message passing can also cause deadlocks [12,
13].

Scala actors can be either heavyweight, with each actor using its own thread,
or event-based, using a thread pool to provide fairness. It is possible to combine

event-based and heavyweight actors in Scala. For event-based actors, Scala can
use a single thread scheduler or a thread pool. Scala’s thread pool scheduler will
add a new thread to its thread pool if all worker threads are blocked due to long-
running operations. This can be much more efficient than heavyweight actors,
as the number of threads can typically remain constant if the worker threads are
not continuously blocked. However, this implementation can still fail if enough
actors are created that block worker threads, as the thread pool can run out of
resources when the JVM cannot create any new threads.

3 The SALSA Lite Runtime

The SALSA Lite runtime was developed to execute the common case fast with
the least amount of overhead. Message processing is accomplished via Java code,
so in terms of the actor model the two most important common cases to execute
fast are message sending and actor creation. Further, these need to be imple-
mented in a way to protect state encapsulation and guarantee safe message
passing.?

Figure 2 shows the runtime environment used by SALSA Lite. As the ac-
tor model provides a simple and efficient way to develop concurrent and dis-
tributed programs, the SALSA Lite runtime practices what we preach. It uses
heavyweight actors (called stages) to simulate the execution of many concur-
rent lightweight actors in parallel, as with a heavyweight actor, each stage has
its own mailbox and thread of control. Because of this, SALSA Lite actors are
implemented as simple Java objects, consisting only of their state (object fields)
and a reference to the stage they are performing or executing on, so other actors
can easily send messages to them by placing those messages in their respective
stage.

A drawback of this implementation is that if any message has an unbounded
processing time, e.g., it enters an infinite loop or calls a blocking method in-
vocation on an object like reading from a socket, the other actors on the same
stage may starve. Currently, the solution to this problem is by creating an actor
with its own stage, as described in Section 3.1, if it could potentially execute a
message with unbounded execution time. This approach is also used by other
performance focused actor implementaitons, such as 1ibcppa [14].

Other implementations, which utilize thread pools (such as Scala) can also
fall prey to this problem — if all threads in the threadpool are in an infinite loop or
call a blocking method which never unblocks, actors waiting to process messages
outside the thread pool will starve. Thread pools can also potentially cause
significant performance overhead and can potentially cause the JVM to run out of
resources when they cannot create new threads. Thread pools were examined for
SALSA Lite, however they resulted in significantly worse performance. Further,

3 State encapsulation refers to the inability to modify an actor’s internal state other
than indirectly by sending it messages. Safe message passing refers to the inability
to missuse the message passing system in order to share memory and thereby break
state encapsulation, e.g., by sending a reference to a mutable object in a message.

Actor | Actor 2 Actor 3 Actor N Actor N + |

Stage References

e) ()
Message | Message |
Message 2 Message 2
Message 3 Message 3
Message K Message |
Thread Mailbox i
) L Thread Mailbox y

Stage | Stage M

Fig. 2. The SALSA Lite runtime environment. Heavyweight actors called stages are
used to process messages on multiple lightweight actors, simulating their concurrent
execution. A stage will repeatedly get the first message from its mailbox and process
that message on the message’s target actor. Every actor is assigned to a stage. A
Message sent to an actor is placed at the end of its assigned stage’s mailbox.

they require each actor to also have some data structure to store their own
individual mailbox, increasing memory requirements.

Examining methods for automatically quarantining actors with unbounded
message processing behavior to their own stages, or other methods for efficiently
ensuring fairness at the runtime level remains an area of future research.

3.1 Actor Creation

1: //create on a default stage
2: MyActor a = new MyActor () ;

3: //create b on a’s stage
4: MyActor b = new MyActor() on (a);

5: //create ¢ on stage 3
6: MyActor ¢ = new MyActor() on (3);

7: //create d on its own new stage
MyActor d = new MyActor ()
on (StageService.getNewStage());

© oo

Fig. 3. SALSA Lite has first class support for which stage (or thread) an actor runs on.
An actor can either use SALSA’s default scheduling, run on the same stage as another
actor, its own new stage, or a stage specified by an identifier.

Figure 3 gives an example of creating actors at different stages. The initial
number of stages used can be specified at runtime, and these stages are identified
0 through N — 1 where N is the number of stages. First class stage support can
be used to create an actor at the same stage as another actor, a stage specified
by its identifier, or its own new stage.

If an actor is created without specifying a target stage, the SALSA runtime
uses a hash function to determine which stage it runs on. Currently, this is done
using the actor’s hash value (which is inherited from Java’s default object hash
value). This hash value was chosen over other strategies (such as generating a
random number) for efficiency, as the hash values serve as random numbers and
are already calculated by the Java runtime as part of object creation so there is
no need to do additional calculation.

The stage the actor is placed on is the actor’s hash value modulo the number
of stages specified at runtime. This makes for an efficient way to distribute actors
over stages in a generally balanced and random way. Hashing actors to stages
is particularly interesting as a research question, as it provides transparent par-
allelism of SALSA Lite programs, allowing the number of stages to be specified
at runtime, independent of the application’s code. Further, it makes it possi-

ble to examine different hashing functions with respect to their load balancing
capabilities and performance.

This implementation also allows SALSA programs to intermingle lightweight
and heavyweight actors without any additional overhead, as a heavyweight actor
is simply an actor running at a stage without any other actors. Furthermore, ac-
tors which communicate frequently can be assigned to the same stage so they do
not have to pay the price of context switching when passing messages, which can
result in significant performance as shown by the ThreadRing and Chameneos-
Redux benchmarks in Sections 4.1 and 4.2, respectively. In this way SALSA
actors have location translucency: a developer can simply specify an initial num-
ber of stages and have the SALSA runtime determine what stage actors will
be assigned to, or the developer can have first class control over the number of
stages used, what actors are assigned to them, and can even change the number
of stages dynamically.

3.2 State Encapsulation

State encapsulation, asynchronous communication, and fairness are the main
semantic concerns in actor languages. As stated by Karmani et al., “Without
enforcing encapsulation, the Actor model of programming is effectively reduced
to guidance for taming multi-threaded programming on shared memory ma-
chines” [15]. Asynchronous communication is critical in preventing deadlocks and
to facilitate the execution of concurrent systems on distributed environments.
Finally, fair scheduling ensures the correctness of an actor system composed of
several existing systems [16]. Without state encapsulation, asynchronous com-
munication, and fairness, it is not possible to guarantee the correct execution of
an actor-oriented program.

Many current actor system implementations use a language or framework
that combines both object-oriented and actor-oriented programming [15], such
as the ActorArchitecture [17], the Actor Foundry [18], JavAct [19], Jetlang [20],
Kilim [10] and Scala [11]. However, the combination of objects, threads, and ac-
tors can lead to inconsistencies in the actor model implementation. For example,
if an actor passes a reference to an object to another actor within a message, both
actors can then access the memory of that object concurrently which can lead
to race conditions, deadlock, or memory inconsistency; nullifying many of the
benefits of the actor model. Some approaches, such as Kilim’s, have attempted
to address this issue by zero-copy isolation types [10], while others simply allow
these inconsistencies. Erlang monitors the call stack and suspends actor process-
ing, yielding to others if an actor takes too long to process a message [9], and
Scala uses a thread pool which will spawn new threads if message processing
becomes blocked [11]. In summary, it is very difficult to guarantee state encap-
sulation and deadlock freedom; and often complicated run time solutions are
necessary to ensure fairness.

SALSA Lite guarantees state encapsulation during the compilation process.
The SALSA lite compiler generates Java objects for each actor, which have all
their state fields and methods flagged as private. The compiler generates two

methods which take a message object and invoke the corresponding method or
constructor on the actor, and these can only be invoked by that actor’s con-
trolling stage. Further, as SALSA Lite allows the use of Java objects, and the
underlying implementation of actors and their references are objects, to prevent
programmer confusion the compiler explicitly does not allow for methods to
be invoked on actor references, and generates appropriate error messages. This
guarantees state encapsulation of all actors.

3.3 Safe Message Passing

When a message is sent to an actor, it is placed in the mailbox of that actor’s
stage. Stages process messages in the same first-in, first-out manner as actors,
except the messages are invoked on the target actor instead of the stage. As each
actor is only assigned to a single stage, multiple messages will not be processed
by an actor at the same time. Because this runtime is based on the actor model
as well, there are very few synchronization points. The LinkedList of a stage’s
mailbox must be synchronized such that the thread will wait for new messages to
be placed in the mailbox if it is empty, and incoming messages must be added to
the mailbox one at a time. Inter-stage fairness follows from Java thread execution
fairness. While the current implementation uses synchronization around the use
Java’s LinkedList class for a mailbox, performance may potentially be further
improved by using lock-free data structures [14, 21-24], which will be investigated
as future work.

When messages are sent, they must not allow direct access to the state of
the actor sending the message, otherwise this would violate state encapsulation
and distributed memory. One way to enforce this is by doing a deep copy on
every argument passed in a message from one actor to another. However, this
is not particularly efficient. Further, when an actor sends a message to another
actor, the arguments of that message can either be references to other actors
(whose state and references to objects and other actors do not need be copied)
or objects, which do need to be copied. For a simple example, an argument to
a message may be an ArrayList of actors. The ArrayList should be copied,
but the actors (as well as the objects and actors referenced by those actors) it
contains should not.

The SALSA Lite compiler uses static type checking and static method res-
olution which enable us to implement fast and safe message passing. In Java,
primitives and immutable objects are passed by copy, while mutable objects are
passed by reference. In order to sucessfully implement safe and efficient message
passing in SALSA, primitives, immutable objects and mutable objects need to
be passed by copy, while actors should be passed by reference.

Previous SALSA implementations use Java’s default serialization interface,
which would copy the entire message over a socket connection, which is not par-
ticularly efficient. In SALSA Lite, each stage only processes one message at a
time, which allows the use of highly efficient and unsynchronized fast byte array
input and output streams for the deep copy [25]. Further, as the SALSA lite com-
piler has static type checking, it can selectively copy only the message arguments

which require it (mutable objects), by wrapping those particular arguments in
a deep copy call.

Actors were implemented as Java objects extending a simple Actor class.
SALSA disallows direct access to any fields within an actor, and these objects
to allow message passing from other actors. These references are essentially im-
mutable, so it is safe to share them between actors and objects. State encap-
sulation is enforced in SALSA utilizing the writeReplace and readResolve
methods of Java’s java.io.Serializable interface. The SALSA compiler pro-
vides a writeReplace and readResolve for each actor. When an actor is to
be serialized, Java will call the writeReplace method and instead serialize the
object returned by that method. When that object is read, its readResolve
method will be called and the result of that method used as the unserialized
object. This is used to hijack the serialization process of actors, preventing them
from being copied. The writeReplace places the written actor into a hash ta-
ble (using a hash function which generates unique values, separate from Java’s
default implementation which potentially has collisions), and returns an object
with the hash value for that actor. The readResolve method takes the hash
value of the serialized object, looks up the actor in the hash table and returns
that actor. This approach also has further benefits in that it allows actor refer-
ences to be tracked when actors are serialized to remote locations via migration
in distributed applications.

3.4 Garbage Collection

Erlang provides garbage collection via a mark-and-sweep algorithm [26]. The
actor implementation on the Kilim and Scala languages do not provide garbage
collection at all. Using the description of actor liveness and garbage presented
by Kafura et al. [27], an actor is garbage if:

— it is not a root actor.
— it cannot potentially send a message to a root actor.
— it cannot potentially receive a message from a root actor.

We can define an unblocked actor as an actor that is either processing a
message or has messages waiting for it in its mailbox. A potentially unblocked
actor is an actor that another unblocked or potentially unblocked actor has a
reference to (and thus messages could be sent to it). Because of this, an actor is
garbage if it is not potentially unblocked [28, 29].

All SALSA actors have static references to standard output, standard input,
and standard error (via Java), so they all have references to root actors and
objects. Therefore, in SALSA there cannot be active garbage, or garbage actors
that repeatedly send messages to each other, since if an actor is processing
messages, it can potentially send messages to root actors. Detecting live (non-
garbage) actors is therefore reduced to reachability from potentially unblocked
actors, also called pseudo-roots [28, 29].

In Java garbage collection, objects are collected if they are unreachable by a
non-system thread. In SALSA Lite, the only non-system threads are the threads

used by stages. In non-distributed programs, unblocked actors are always reach-
able by a stage thread, as the stage will have either a reference to the actor as
it is processing a message, or a reference to a message in its mailbox which has
a reference to that actor. As unblocked actors are always reachable by a stage
thread, potentially unblocked actors are as well, because there will be a chain
of references through other unblocked and potentially unblocked actors to every
potentially unblocked actor. The only references to actors are in messages or
in the state of an actor. If an actor is garbage, it is unreachable by any stage
thread as there will be no messages to it in its stage mailbox and no unblocked
or potentially unblocked actors will have a reference to it. Therefore it will be
reclaimed by Java’s garbage collector.

Because of this, the stage based runtime presented automatically maps local
actor garbage collection to object garbage collection, allowing SALSA Lite to
use Java’s garbage collection to reclaim non-distributed garbage actors without
additional overhead.

4 Performance Benchmarks

This section compares the performance of Erlang, Kilim, SALSA, and Scala
with three different benchmarks. The ThreadRing benchmark measures the per-
formance of message passing between concurrent entities (in this case, actors).
Chameneos-Redux measures not only the performance of message passing, but
also the fairness of scheduling for the concurrent entities. FibonacciTree measures
the performance of message passing and actor creation, as well as the memory
usage of many concurrent actors.

All experiments were run in a 2.93 GHz Intel Core 2 Duo MacBook Pro with
4 GB 1067 MHz DDR3 RAM, running Mac OS X 10.6.2. The Java version used
was 1.6.0_17. The mean runtime for 25 experiments was used for all performance
figures, and includes start up and shut down time (they were not run repeatedly
within a JVM). The implementations of ThreadRing and Chameneos-Redux
used by Java, Scala and Erlang were taken from the best performing versions
at the Computer Language Benchmarks Game*. Scala 2.7.7, Erlang R14A, and
Kilim 0.6 were used to perform the tests. The FibonacciTree has been used by
SALSA in the past to test its performance, however it is not as well known as
ThreadRing and Chameneos-Redux, so implementations were made for Erlang,
Kilim and Scala using the same message passing strategy used by SALSA. Be-
cause of this it should be noted that there may be better performing implemen-
tations for Erlang, Kilim and Scala if written by an expert in those languages.
However, the SALSA benchmarks were also programmed as typical program-
mers (e.g., see Appendix A and B for the SALSA code for the Fibonacci and
ThreadRing benchmarks), and were not extensively optimized either.

ThreadRing Performance

1000.0
3F SALSA (1 stage)
SCALA
SCALA (STS)
1 ERLANG
% 1000 ~—o kim
-g O Java
o
(&
@
2 100
o
£
€
=}
o 1.0
0.1
0.5 5 50 500 5,000 50,000

Message Hops (thousands)

Fig. 4. The performance of Java, Kilim, Erlang, SALSA, and Scala for the Thread-
Ring benchmark. SALSA used a single stage runtime, while Scala used a single thread
scheduler (STS) and its typical thread pool runtime. Kilim had indistinguishable re-
sults for a single and double thread scheduler. The Java implementation used standard
Java threads and the java.util.concurrent.locks.LockSupport class for a locking
mechanism.

4.1 ThreadRing

The specification for the ThreadRing benchmark states that 503 concurrent en-
tities should be created and linked either explicitly or implicitly in a ring. Fol-
lowing this, a token should be passed around the ring N times. The ThreadRing
benchmark provides a good measurement of the time to pass messages between
actors. It also provides an interesting mechanism to examine the cost of context
switching between actors (or threads), as only one is active at any given time
while it is passing the token. Because of this, lightweight threading implemen-
tations which do not require context switching can provide significant speedup
over heavyweight implementations.

Figure 4 compares the performance of Java, single stage SALSA, Kilim, Scala
with a single thread scheduler (STS), typical Scala with a thread pool, and Er-
lang as the number of times the token was passed (message hops) was increased
from 500 to 50,000,000. The runtime did not change much between 500 and
50,000 message hops, as the majority of this time was the startup cost of the
runtime environment. While the startup cost of Erlang was the lowest, the perfor-
mance overhead of message passing increased the fastest of the actor languages.
Single stage SALSA had the fastest performance for message passing, and from
500,000 to 50,000,000 message hops had the lowest runtime. Single thread Scala
had very fast message passing, however above 500,000 message hops it suffered

* http://benchmarksgame.alioth.debian.org/

ThreadRing Performance

1000.0
 SALSA (1 stage)
Zx SALSA (2 stage)
SALSA (3 stage)
1 SALSA (4 stage)
100.0 ‘O SALSA (1 stage per actor)
O Java

10.0

Runtime (seconds)

-
o

0.1

5 50 500 5,000 50,000
Message Hops (thousands)

Fig. 5. The performance of SALSA using one to four stages, and to Java for the
ThreadRing benchmark. This illustrates the high cost of thread context switching for
this benchmark.

from stack overflow and could not complete the benchmark, because the mes-
sage passing strategy used involved recursion and method invocation. Kilim had
a similar startup time to SALSA, however message passing was not as fast. The
Java ThreadRing had the worst performance, due to its traditional heavyweight
thread usage. It should be noted that the runtime in the figure is a logarith-
mic scale, and that single stage SALSA had extremely fast message passing; for
50,000,000 message hops, SALSA was three times faster than Kilim, and an order
of magnitude faster than Erlang and Scala, and almost two orders of magnitude
faster than Java.

As the SALSA runtime allows the number of actors in the system to be inde-
pendent from the number of stages, or threads, used; Figure 5 shows the runtime
of the ThreadRing benchmark using one to four stages, and a heavyweight ver-
sion with one stage per actor. With multiple stages, the high cost of context
switching becomes apparent, as the more stages there are, the more threads
the message must hop through, causing more context switching. This is further
demonstrated as the heavyweight SALSA ThreadRing performance matches the
Java performance with some overhead (approximately 23%). As only there is
only one message being passed at a time around the ring, when it is passed
between actors on different stages, it will not continue to be passed until the
context switches to that other stage. This also illustrates the benefit of having
first class control over what stage processes what actor. In a SALSA application,
actors which communicate frequently can be assigned to the same stage and thus
not have to pay the cost of context switching when message passing. This is not
possible using a thread pool based runtime, as is done in Scala and Erlang.

4.2 Chameneos-Redux

The Chameneos-Redux benchmark not only tests the speed of message passing,
but also the fairness of concurrency scheduling. Two runs are done, one with an
odd number of creatures (three) and another with an even number of creatures
(ten). For each run, the creatures repeatedly go to a meeting place and meet
(or wait to meet) another creature. Each creature has a color and upon meeting
another creature both change their color to the complement of the creature they
met. This tests the performance of message passing as there are many messages
between the chameneos creatures and the meeting place. Additionally, it tests
fairness of concurrency scheduling as with an unfair scheduler, some creatures
will meet more than others.

Chameneos-Redux Performance

1000.0
W SALSA-Lite (1 stage)
7 SALSA-Lite (1 stage per actor)
SCALA
11 ERLANG
100.0 o Kilim (1 thread)

10.0

Runtime (seconds)

1.0

0.1
0.6 6 60 600 6,000

Meetings (thousands)

Fig. 6. The performance of Erlang, Kilim, SALSA, and Scala for the Chameneos-Redux
benchmark. SALSA used both a lightweight runtime with a single stage and a heavy
weight runtime which assigned each creature to its own stage. Only the thread pool
version of Scala is shown as the benchmark had errors with a single thread scheduler.
Kilim had indistinguishable results for both a single and double thread scheduler.

Figure 6 compares the performance of Erlang, Killim, Scala and SALSA for
the Chameneos-Redux benchmark, as the number of meetings was increased from
600 to 6,000,000. SALSA used a single stage runtime and a heavyweight runtime
with one actor per stage. As with ThreadRing, the single thread scheduler in
Scala had runtime errors due to stack overflow, so only the thread pool version
of Scala is given. Again, Erlang was the quickest to start up, however its message
passing was slower than both Scala and the single thread SALSA runtime. As
the heavyweight SALSA Chameneos-Redux required context switching for each
message passed between the creatures and the meeting place, its performance was

very poor. As with the ThreadRing benchmark, single stage SALSA had the best
runtime after startup costs became insignificant, being 1.75x faster than Kilim,
2.5x faster than Scala, and ten times faster than Erlang for 6,000,000 meetings.

Chameneos-Redux Fairness

50000
M 3 Chameneos
M 10 Chameneos
37500
25000

Standard Deviation of Meetings

12500 I I

ONV143
VIVOS

(Peaiy} |) wipy

(PeaIy} 2) Wity I

(AneoH) @171-VSIVS E

(Peauy} |) 81T-vSIVS

Fig. 7. The fairness of scheduling in Erlang, Kilim, SALSA and Scala. SALSA used
both a single stage runtime and a multi-stage runtime that assigned each chameneos
creature (and the meeting place) to its own stage. Kilim used both a single and double
thread scheduler. The standard deviation between the meetings of creatures is shown,
so a lower standard deviation is more fair concurrency. Single stage SALSA and single
thread Kilim were perfectly fair with a standard deviation of 0.

Not only does the Chameneos-Redux benchmark test the speed of message
passing between concurrent entities, it also provides a measure of the fairness of
concurrency. With perfectly fair scheduling, each chameneos creature should
have the same number of meetings. Figure 7 shows the standard deviation
between the meetings of each chameneos creature for Chameneos-Redux with
6,000,000 meetings, run ten times for each language and runtime; for both the
run with three creatures and the run with ten creatures. A lower standard devi-
ation meant scheduling was more fair, as there was less difference in the number
of times the creatures met. Both single stage SALSA and single thread Kilim
were perfectly fair by processing messages in a first-in, first-out manner. Double
thread Kilim had almost perfectly fair scheduling for an even number of crea-
tures (10), and was almost perfect for an odd number (3). While a heavyweight
Chameneos-Redux implementation in SALSA had the worst runtime, it had the
next best fairness as it relied on Java’s thread scheduling. Erlang and Scala
had different fairness depending on the number of creatures. Erlang had better
fairness for three creatures while Scala had better fairness with ten.

4.3 FibonacciTree

The last benchmark tested was a concurrent Fibonacci tree. This benchmark cal-
culates the Fibonacci number using concurrent actors. A Fibonacci actor com-
putes the Fibonacci number N by creating two child Fibonacci actors with the
Fibonacci numbers N — 1 and N — 2, which create their own children and so on.
If a Fibonacci actor is created with N = 0 it returns 0 to its creator, and if it is
created with N < 2 it returns 1 to its creator. This benchmark not only tests the
speed of message passing, but also the speed of creation of new actors. As this
benchmark generates many actors, memory usage can be quite high. Because of
this, Kilim, SALSA and Scala used the -Xmx and -Xms flags of the Java Virtual
Machine to set the initial and maximum heap size to 2000MB, as the cost of
allocating new memory has a significant effect on the runtime of the benchmark.

FibonacciTree

100.0
5 SALSA (1 stage)
#r SALSA (smart, 4 stages)

SALSA (1 stage per actor)
1} SCALA (STS)
O SCALA
10.0 — © ERLANG
O KILIM

Runtime (seconds)

5 10 15 20 25 30

FibonnaciTree(N)

Fig. 8. The performance of the FibonacciTree for SALSA with a single stage, one
stage per actor, and a smart implementation that placed subtrees across 4 stages,
single thread scheduler and thread pool Scala, Kilim and Erlang. Both Erlang and
heavyweight SALSA ran out of memory after FibonacciTree(20).

Figure 8 shows the performance of the FibonacciTree benchmark for SALSA
with a single stage, one actor per stage, and a smart implementation that dis-
tributes subtrees across 4 stages, Kilim, Scala with a thread pool and a single
thread scheduler, and Erlang. Both heavyweight SALSA and Erlang (which also
uses a heavyweight actor implementation) failed after FibonacciTree(20), as no
more resources were available to create new threads or processes. For Fibonac-
ciTree with N > 20, the smart implementation using four stages in SALSA
had the best performance. This implementation shows the benefit of using first

class stage support to split the FibonacciTree into closely sized subtrees® and
assigning each of these to its own stage to be processed in parallel, improving
performance by 44% over single stage SALSA (1.8 seconds to 2.6 seconds). Kilim
was initially faster than Scala due to its faster startup time, however the single
thread scheduler for Scala had the next best performance for larger Fibonacci
numbers. Using the thread pool runtime of Scala had the worst performance.
For smaller Fibonacci numbers, Erlang had the best performance until it ran
out of resources, due to its fast startup time.

FibonacciTree Memory Usage

10000
M FibonacciTree(25)
. M FibonacciTree(30)
m
S 1000
(]
(2]
[
8 100
e
o
QE) 10
=

(eBess |) 81-vSIVS
(eBeys 2) o 1-VSTVS
(S1S) VIvOS
VIVOS

NI

Fig. 9. Memory usage of FibonacciTree(25) and FibonacciTree(30) for SALSA with a
single stage and the smart implementation with four stages, Kilim, and Scala with a
single thread scheduler and thread pool. It should be noted that JVM memory usage
was capped at 2000MB, and Scala with a thread pool could not allocate more than
this amount of memory for FibonacciTree(30).

Scala with the single thread scheduler had the best memory usage, as it
used recursion and method invocation on objects instead of actor creation and
actual message passing, and thus had the interesting property of not requir-
ing extra memory for larger Fibonacci numbers. Apart from this, SALSA had
similar memory use for both a single and multi stage runtime, at 8OMB for
FibonacciTree(25) and 600MB for FibonacciTree(30). Kilim required the next
least memory for FibonacciTree(25) and (30), around 180MB and 1530MB re-
spectively. Scala required 300MB for FibonacciTree(25), and significantly more

® For FibonacciTree(30), stage 0 would be assigned FibonacciTree(28), stage 1 would
be assigned FibonacciTree(27), stage 2 would be assigned FibonacciTree(27) and
stage 3 would be assigned FibonacciTree(26).

memory for FibonacciTree(30), reaching the imposed limit of 2000MB with a
thread pool runtime.

5 Discussion

This work describes an extremely efficient hash based runtime, in which actors
are highly lightweight and independent from the threading mechanism used.
The SALSA Lite runtime uses stages, similar to heavyweight actors, each with
their own thread of control and mailbox, to simulate the concurrent execution
of multiple lightweight actors. Each actor is assigned to a stage, either by an
application developer using first class support to intelligently co-locate frequently
communicating actors and give heavyweight actors their own thread, or by the
SALSA Lite runtime. An added benefit of using this stage based runtime is
that it automatically maps actor garbage collection to object garbage collection,
and SALSA Lite can directly use Java’s garbage collection for local (or non-
distributed) concurrent programs.

Because of the stage based runtime and semantically guaranteed fairness and
encapsulation, SALSA Lite significantly improved message passing performance
and memory usage over earlier versions of SALSA. Results show that SALSA
Lite’s runtime is significantly faster than other existing actor implementations,
two times faster than Kilim, between two and ten times faster than Scala, and
over an order of magnitude faster than Erlang for the ThreadRing, Chameneos-
Redux and FibonacciTree benchmarks. Additionally, with a similar result to
single thread Kilim, SALSA Lite has perfect fairness using a single stage for the
Chameneos-Redux benchmark. SALSA’s memory usage was also less than Kilim
and Scala using a thread pool scheduler, however not less than Scala’s single
thread scheduler which did not increase for larger FibonacciTree numbers due
to its recursive method invocation, as opposed to actor creation based, strategy.

6 Future Work

While this paper describes SALSA Lite’s non-distributed runtime and semantics
in detail, SALSA also provides location transparency and mobility for distributed
computing [5]. This lays the groundwork for extending the runtime presented
with support for distributed applications with minimal overhead. Additionally,
the strategy used for mapping actor garbage to local garbage will not work
for distributed applications, so efficient distributed garbage collection is also
required, e.g. [30, 31, 28].

Performance is limited by SALSA being implemented in Java. For example,
in Section 4, Erlang consistently has the fastest startup time. While the Java
implementation does have many benefits (like use of Java’s libraries), it should be
possible to have a significantly faster actor implementation if it was built up from
a lower level, as done in ABCL [32] or 1ibeppa [14]. This would also allow for a
purely actor model implementation, and if developed in C or C++ would allow
easy use of MPI, GPUs and many-integrated core accelerator cards, resulting in

an actor language for high performance computing with the additional benefits
of transparent parallelism and mobility.

Further, in work done by Plevyak et al. [33] and in systems like ABCL [32],
compile and runtime optimizations are used to process messages using local
non-parallel function calls when applicable. This can result in significant perfor-
mance increases, as it utilizes the stack instead of the heap, and message passing
typically requires the creation of an additional message object and passing in-
formation about the messages sender and potential receiver for return values.
SALSA Lite currently utilizes the heap for all message passing, with each mes-
sage requiring creation of a message object, which is slower than a pure object
method invocation. Another area of future work is to investigate strategies for
using the stack and method invocation when possible, e.g.when multiple actors
are on the same stage and are passing messages to each other which do not
require continuations.

Further, to guarantee fairness in this runtime, currently a programmer needs
to identify actors which could potentially process unbounded messages and as-
sign them to their own stages. While this significantly reduces overhead, it may
be desirable to have the runtime automatically enforce fairness by quarantining
actors with long running messages to their own stage. A future area of research
is to evaluate ways of enforcing fairness without significant overhead; as many
applications do not require this enforcement.

The SALSA Lite runtime uses a hash based strategy to determine what
stages actors are assigned to. An interesting avenue of research would be exam-
ining other scheduling strategies for assigning actors to stages in an intelligent
manner; for example, in the ThreadRing benchmark, there is no reason to divide
the actors over multiple stages and suffer from context switching. The runtime
presented also gives first class support for assigning actors to threads. Previ-
ous work with the Internet Operating System (IOS) has shown that dynamic
reconfiguration of distributed SALSA programs can be used to improve perfor-
mance [34, 35]. The stage based runtime can be extended to enable local mobility
of actors, allowing actors to dynamically change what stage they are assigned
to. It also may be possible to improve application performance through intelli-
gent middleware that profiles the runtime and rearranges actors based on their
communication patterns.

Acknowledgements
This work has been partially supported by the National Science Foundation

under NSF CAREER Award No. CNS-0448407, and by the Air Force Office of
Scientific Research under Grant No. FA9550-11-1-0332.

References

1. Hewitt, C.: Viewing control structures as patterns of passing messages. Artificial
Intelligence 8 (1977) 323-364

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.

22.
23.

. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT

Press, Cambridge, MA, USA (1986)

Kim, W., Agha, G.: Efficient Support of Location Transparency in Concurrent
Object-Oriented Programming Languages. In: Proceedings of Supercomputing’95.
(1995) 39-48

Agha, G., Jamali, N.: Concurrent programming for distributed artificial intelli-
gence. In Weiss, G., ed.: Multiagent Systems: A Modern Approach to DAI. MIT
Press (1999)

Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with
SALSA. SIGPLAN Not. 36 (2001) 20-34

Varela, C.: Worldwide Computing with Universal Actors: Linguistic Abstractions
for Naming, Migration, and Coordination. PhD thesis, U. of Illinois at Urbana-
Champaign (2001) http://osl.cs.uiuc.edu/Theses/varela-phd.pdf.

Miller, M.S., Shapiro, J.S.: Robust composition: Towards a unified approach to
access control and concurrency control. PhD thesis, Johns Hopkins University
(2006)

Miller, M., Tribble, E., Shapiro, J.: Concurrency among strangers. Trustworthy
Global Computing (2005) 195-229

Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for Java. In Vitek, J.,
ed.: ECOOP. Volume 5142 of Lecture Notes in Computer Science., Springer (2008)
104-128

Haller, P., Odersky, M.: Actors that unify threads and events. In: Proceedings of
the 9th International Conference on Coordination Models and Languages (COOR-
DINATION). (2007) 171-190

Vermeersch, R.: Concurrency in Erlang and Scala: The actor model (2009)
http://ruben.savanne.be/articles/concurrency-in-erlang-scala.

Varela, C., Agha, G.: What after Java? From Objects to Actors. Computer Net-
works and ISDN Systems: The International J. of Computer Telecommunications
and Networking 30 (1998) 573-577 Proceedings of the Seventh International Con-
ference on The World Wide Web (WWWT7), Brisbane, Australia.

Schmidt, D.C.T.C., Hiesgen, R., Wéhlisch, M.: Native actors—a scalable software
platform for distributed, heterogeneous environments. (2013)

Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform: a
comparative analysis. In: PPPJ ’09: Proceedings of the 7th International Confer-
ence on Principles and Practice of Programming in Java, New York, NY, USA,
ACM (2009) 1120

Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming 7 (1997) 1-72

Jang, M.W.: The Actor Architecture Manual. Department of Computer Science,
University of Illinois at Urbana-Champaign. (2004)

Astley, M.: The Actor Foundry: A Java-based Actor Programming Environment.
Open Systems Laboratory, University of Illinois at Urbana-Champaign. (1998-99)
Rougemaille, S., Arcangeli, J.P., Migeon, F.: Javact: a Java middleware for mobile
adaptive agents. (2008)

Rettig, M.: Jetlang (2008-09) http://code.google.com/p/jetlang)/.

Valois, J.D.: Lock-free data structures. (1996)

Alexandrescu, A.: Lock-free data structures. C/C++ User Journal (2004)
Herlihy, M., Luchangco, V., Moir, M.: The repeat offender problem: A mechanism
for supporting dynamic-sized lock-free data structures. (2002)

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Herlihy, M., Luchangco, V., Martin, P., Moir, M.: Nonblocking memory manage-
ment support for dynamic-sized data structures. ACM Transactions on Computer
Systems (TOCS) 23 (2005) 146-196

Isenhour, P.: Faster deep copies of java objects.
(http://javatechniques.com/blog/faster-deep-copies-of-java-objects/) Accessed:
2/26/2013.

Armstrong, J., Virding, R.: One pass real-time generational mark-sweep garbage

collection. In: In International Workshop on Memory Management, Springer-Verlag
(1995) 313-322

Kafura, D., Washabaugh, D., Nelson, J.: Garbage collection of actors. SIGPLAN
Not. 25 (1990) 126-134

Wang, W.: Distributed Garbage Collection for Large-Scale Mobile Actor Systems.
PhD thesis, Rensselaer Polytechnic Institute (2006)

Wang, W., Varela, C.A.: Distributed garbage collection for mobile actor systems:
The pseudo root approach. In: Proceedings of the First International Conference
on Grid and Pervasive Computing (GPC 2006). Volume 3947 of Lecture Notes in
Computer Science., Taichung, Taiwan, Springer (2006) 360-372

Kamada, T., Matsuoka, S., Yonezawa, A.: Efficient parallel global garbage collec-
tion on massively parallel computers. In: Proceedings of the 1994 conference on
Supercomputing, IEEE Computer Society Press (1994) 79-88

Wang, W.J., Varela, C., Hsu, F.H., Tang, C.H.: Actor garbage collection using
vertex-preserving actor-to-object graph transformations. In: Advances in Grid
and Pervasive Computing. Volume 6104 of Lecture Notes in Computer Science.,
Bologna, Springer Berlin / Heidelberg (2010) 244-255

Taura, K., Matsuoka, S., Yonezawa, A.: An efficient implementation scheme of
concurrent object-oriented languages on stock multicomputers. ACM SIGPLAN
Notices 28 (1993) 218228

Plevyak, J., Karamcheti, V., Zhang, X., Chien, A.A.: A hybrid execution model for
fine-grained languages on distributed memory multicomputers. In: Proceedings of
the 1995 ACM/IEEE conference on Supercomputing (CDROM). Supercomputing
'95, New York, NY, USA, ACM (1995)

Desell, T., Maghraoui, K.E., Varela, C.A.: Malleable applications for scalable high
performance computing. Cluster Computing (2007) 323-337

Maghraoui, K.E., Desell, T., Szymanski, B.K., Varela, C.A.: The Internet Operat-
ing System: Middleware for adaptive distributed computing. International Journal
of High Performance Computing Applications (IJHPCA), Special Issue on Schedul-
ing Techniques for Large-Scale Distributed Platforms 20 (2006) 467-480

A Fibonacci.salsa

A simple concurrent Fibonacci program in SALSA. The SALSA syntax is ex-
tremely similar to Java’s syntax, and it can utilize all of Java’s libraries (lines
9, 26). The new command creates a (concurrent) actor (lines 20 and 21), and
<- sends asynchronous messages (lines 11, 20, 21). If a message or result of a
message requires the result of another message (lines 11, 20, 21) it will not be
sent until the required result has been sent with the pass statement (lines 16,
18, 20, 21), similar to a return statement. The constructor taking a array of
arguments serves as an actor’s main method.

1: behavior Fibonacci {

2 int n;

3

4: Fibonacci(int n) {

5: self.n = n;

6: }

7:

8: Fibonacci(String[] arguments) {

9: n = Integer.parselnt(arguments[0]);
10:

11: self<-finish(self<-compute());
12: }

13:

14: int compute() {

15: if (n == 0) {

16: pass O;

17: } else if (n <= 2) {

18: pass 1;

19: } else {

20: pass new Fibonacci(n-1)<-compute() +
21: new Fibonacci(n-2)<-compute() ;
22: }

23: }

24:

25: ack finish(int value) {

26: System.out.println(value);

27: }

28: }

B ThreadRing.salsa

A simple concurrent ThreadRing program in SALSA. A JoinDirector (line 20) is
an actor that provides a method for waiting for a group of messages to complete
before sending another message. After an actor completes a message, it sends a
join message to the JoinDirector (lines 27 and 30), which will resolve after it has
received a number of messages specified by sending a resolveAfter message (line
32). In this case, only after the JoinDirector receives threadCount messages, the
forwardMessage will be send (line 33).

import salsa_lite.language.JoinDirector;
: behavior ThreadRing {

1:
2
3
4. ThreadRing next;
5 int id;

6

7 ThreadRing(int id) {

8: self.id = id;

9: }

10:

11: ThreadRing(String[] args) {

12: if (args.length != 2) {

13: System.out.println("Usage: java ThreadRing <threadCount> <hopCount>");
14: pass;

15; }

16:

17: int threadCount = Integer.parselnt(args[0]);
18: int hopCount = Integer.parselnt(args[1]);
19:

20: ThreadRing first = new ThreadRing(1);
21: JoinDirector jd = new JoinDirector();
22:

23: ThreadRing next = null;

24: ThreadRing previous = first;

25: for (int i = 1; i < threadCount; i++) {
26: next = new ThreadRing(i + 1);

27: previous<-setNextThread(next) @ jd<-join();
28: previous = next;

29: }

30: next<-setNextThread(first) @ jd<-join();
31:

32: jd<-resolveAfter (threadCount) @

33: first<-forwardMessage (hopCount) ;

34: }

35:

36: ack setNextThread(ThreadRing next) {

37: self.next = next;

38: }

39:

40: ack forwardMessage(int value) {

41: if (value == 0) {

42: System.out.println(id);

43: System.exit (0);

44 } else {

45: value—-;

46: next<-forwardMessage (value) ;

47: }

48: }

49: }

