
Using Actors and the SALSA Programming Language to Introduce Concurrency in
Computer Science II

Travis Desell
Department of Computer Science

University of North Dakota
Grand Forks, ND, USA

Email: tdesell@cs.und.edu

Abstract—The SALSA programming language was used in
a two week module to introduce concurrent and distributed
programming concepts to computer science II students at the
University of North Dakota. Computer science II is taught us-
ing Java, which made for an easy transition to using SALSA for
concurrent programming, as it has a similar syntax and allows
the use of Java objects. The actor model was introduced, along
with the and necessary concepts of concurrency, asynchronous
message passing and distributed memory. As an evaluation, a
survey was given to students before and after the module, with
the results of the survey highlight the fact that early computer
science students do have a natural understanding of many
concurrent and distributed programming concepts. Further,
they can make their minds up quickly, gaining confidence much
easier than they gain actual knowledge. It was also observed
that the students learned concepts better by applying them
in programming assignments than by being presented them
in lecture. This work provides motivation for longer, applied
learning modules on concurrent and distributed programming
in future early programming courses.

Keywords-parallel and distributed computing education; ac-
tor model; computer science II

I. MOTIVATION

The object and threads programming model used by
Java and many other programming languages presents some
difficulties for beginning computer science students, namely
how to appropriately deal with deadlocks and how to syn-
chronize data access (to prevent memory errors). Further,
programs written using objects and threads can be difficult
to debug, as it is challenging to determine which threads
are causing these problems as there is no representation of
this in the source code. These challenges are reflected in
the NSF/TCPP Curriculum Initiative document [1], where
concurrency defects and tools to detect them are suggested
to be taught at the Data Structure and Algorithms level.

Objects and threads have a model where multiple tasks
can be performed on the same object at the same time. As
such, it is not particularly intuitive, as it is not representative
of how things happen concurrently in the real world. Alter-
nately, the actor model combines a thread of control, along
with its state and behavior into a single unit of concurrency.
Each actor maintains a mailbox of messages and will process
them one after the other. As such, the hypothesis is that using

the actor programming model, which is more ”true to life”,
may prove more intuitive for beginning students. This has
some support in the education community as, e.g., MIT’s
Scratch programming language used for education is also
based on the actor model [3].

An actor combines a thread of control, along with its state
and behavior into a single unit of concurrency [4]. Each
actor maintains is own mailbox, and repeatedly processes
messages in that mailbox one after the other. The actor
model uses distributed memory, which prevents concurrent
memory accesses, and actors communicate via asynchronous
message passing which makes it very difficult to program
deadlocks – easing the problem of concurrent programming.
This can make concurrent programming significantly sim-
pler, as shown in Figure 1, which demonstrates a concurrent
Fibonacci number calculator in the SALSA programming
language.

II. METHODOLOGY

Computer Science II has been traditionally taught in Java
at the University of North Dakota, to introduce students to
concepts of object oriented programming such as inheri-
tance, polymorphism, generics and software design. Other
topics include an overview of Java’s libraries and syntax, an
introduction to data structures such as stacks, queues and
trees, as well as sorting algorithms such as quicksort and
mergesort, which also introduce the students to recursion,
and their analysis using big O notation.

Computer Science II is taught with a strong focus on
applied learning by using extensive in-class programming
assignments to reinforce the information taught in the lec-
tures. One class a week is lecture style, while the remaining
two classes are in the lab, along with an additional 2 hour
evening programming lab. Because of this, students typically
complete 2-3 programming assignments a week based on
applying the information taught in the lecture. In general,
while students have found the amount of programming to
be challenging, they prefer the active learning and recognize
the necessity of becoming stronger programmers to succeed
in the computer science field.

1: behavior Fibonacci {
2: int n;
3:
4: Fibonacci(int n) {
5: self.n = n;
6: }
7:
8: Fibonacci(String[] arguments) {
9: n = Integer.parseInt(arguments[0]);
10:
11: self<-finish(self<-compute());
12: }
13:
14: int compute() {
15: if (n == 0) {
16: pass 0;
17: } else if (n <= 2) {
18: pass 1;
19: } else {
20: pass new Fibonacci(n-1)<-compute()
21: + new Fibonacci(n-2)<-compute();
22: }
23: }
24:
25: ack finish(int value) {
26: System.out.println(value);
27: }
28: }

Figure 1. A simple concurrent Fibonacci program in SALSA. The SALSA
syntax is extremely similar to Java’s syntax, and it can utilize all of Java’s
libraries (lines 9, 26). The new command creates a (concurrent) actor (lines
20 and 21), and <- sends asynchronous messages (lines 11, 20, 21). If a
message or result of a message requires the result of another message (lines
11, 20, 21) it will not be sent until the required result has been sent with
the pass statement (lines 16, 18, 20, 21), similar to a return statement.
The constructor taking a array of arguments serves as an actor’s main
method. This example is also a simple introduction to concepts of divide
& conquer, recursion and reduction.

A two week course module was used to introduce con-
current programming topics using the SALSA programming
language. A survey was given to students pre- and post-
module to measure knowledge gains, changes in student
confidence as well as student interest in concurrent and
distributed programming.

III. TEACHING CONCURRENCY USING SALSA

With the structure of Computer Science II, there was time
for one hour lecture and 4 lab hours each week. As opposed
to most other weeks in the course, where students had 2-3
programming assignments to complete in the lab sessions,
students were given a single programming assignment due
to the fact that the concepts involved were more advanced
and that they were using a new programming language.

The first week’s lecture focused on introducing the syn-
tactic differences between SALSA and Java, as well as the
concepts of concurrency, asynchronous message passing and
distributed memory. Students were given skeleton code for
a parallel trapezoidal rule solver and asked to implement a
version which could run any number of worker actors which
could calculate slices of the trapezoidal rule, whose results
would be summed up by the master actor (see Figure 2).

The second week focused on introducing non-determinism
and concurrency defects. In actor programming languages,

Trapezoidal Master

Trapezoidal
Worker 1

Trapezoidal
Worker 2

Trapezoidal
Worker N. . .

Trapezoidal Master

calculateSlice messages

accumulateIntegral messages

Figure 2. The trapezoidal master creates N trapezoidal worker actors,
sends messages to them to calculate their slice of the integral (which are
done in parallel), then combines the results when the workers are done.

0

7.5

15

22.5

30

10 20 30 40 50 60 70 80 90 100

SALSA Lab Grade Distribution

C
o

u
n

t

Grade

Parallel Trapezoidal
Dining Philosophers

Figure 3. Histogram showing the grade distribution of the two program-
ming assignments. Grades were very bimodal – either students successfully
completed the assignments or did not do them at all.

most concurrency defects occur due to the fact that when
messages are sent asynchronously, the order they are re-
ceived in is not necessarily the order they were sent in,
which is a direct example of non-determinism. Students were
given a faulty dining philosophers SALSA program, which
resulted in deadlock, and were asked to fix the program so
that no philosopher starved.

On average, students performed well on the programming
assignments, and in general, students responded positively to
using the SALSA programming language. Of particular note,
the lack of static methods and fields (SALSA uses a non-
static main constructor, as opposed to a static main method),
aided many students in quickly picking up the language.

The average grade over all students for the non-SALSA
lab assignments was a 78.3, while the trapezoidal assignment
had an average grade of 76.8 and the dining philosophers
had an average grade of 63.2 – however for both assignments
the grade distribution was very bimodal (see Figure 3), most
students successfully completed the lab and received a 100,
while the rest did not submit the lab and received a 0. As the

Figure 4. The change in student interest in distributed and concurrent
programming, pre- and post-module.

Figure 5. The change in (self-assessed) student experience, pre- and post-
module.

dining philosophers assignment was the last of the semester,
the lower grade may be due to the fact that students simply
did not do the assignment due to studying for tests in other
courses, rather than the fact they struggled with the material.

IV. SURVEY EXAMINATION

A survey was given to students before and after the mod-
ule on programming in SALSA. The Computer Science II
course consisted of 34 students (22 were Computer Science
majors). Of these students, 24 students took the pre-survey
and 27 students took the post-survey, with 21 students taking
both the pre- and post-survey. The first part of the survey
addressed student interest and experience in concurrent and
distributed programming.

Interest: Pre-survey, 1 student reported no interest, 17
reported some interest, and 6 reported significant interest.
Post-survey, 4 students reported no interest, 13 reported
some interest, and 10 reported significant interest (see Fig-
ure 4). While unfortunately the interests of all students
weren’t increased by the module, but more students had
an increase in interest than did not (although this is most
likely not statistically significant). The most important thing
to note here is the importance of how these topics are
taught to beginning computer science – a two week module
was sufficient to some students for making up their minds
about further studying this subject. Student major may have
also had some effect on student interest, as 3 of the 5
students who reported no interest in the post survey were
not computer science majors.

Experience: Pre-survey, 18 reported no experience, 6
reported some experience and 0 students reported significant
experience, and post-survey 7 reported no experience, 20
reported some experience, and 0 reported significant ex-

perience (see Figure 5). Again, a short two week module
can have a significant effect on beginning computer science
learners, as most students reported that the module gave
the some experience in concurrent/distributed programming.
The students were also reasonable about their self assessed
knowledge, as none reported that they gained significant
experience.

The rest of the survey consisted of questions divided
into five categories: concurrency, asynchrony vs. synchrony,
determinism, distributed vs. shared memory, and concur-
rency defects. The categories were chosen due to their
relation to what was taught during the two week module.
Each category consisted of 3 to 4 (generally real-world)
scenarios which addressed concepts for those categories. The
rationale behind this approach was that many concurrent
and distributed computing topics generally occur in the real
world, so students may actually have some understanding of
them, but not knowledge of the appropriate terminology.

For each of the scenarios given, students were asked to
mark if the scenario was an example of the topic in question.
Students were also asked to provide their confidence in
each answer (from 0 for no confidence to 5 for extremely
confident), however for some reason most students only
reported their confidence for scenarios that were marked,
which unfortunately makes the confidence data of limited
use. Further, this made it unclear if a student left a scenario
unmarked if they actually giving an answer, or not answering
at all. Because of this, data is presented for correct, wrong
and no answers (as opposed to just correct and wrong).
A response was scored wrong if the student checked the
scenario when it was not an example of the topic. A response
was scored correct if the student marked (or did not mark)
the scenario correctly. A response was scored as no answer if
it should have been marked and was not (and no confidence
was given).

1) Concurrency: Students were asked to check which of
the following scenarios were examples of concurrency:

• (a) Having each member in a group programming
project work on a different section of code before
combining them all at the end.

• (b) Having one roommate wash the dishes while the
other dries the washed dishes.

• (c) Answering the questions in this survey sequentially,
one after the other.

• (d) Answering the questions in any order, returning
later to questions you may have skipped.

The first two scenarios are examples of concurrency while
the last two are not. Figure 6 shows how the responses of
the students changed over the course of the module. For
scenarios (a) and (b), average student confidence increased
from 3.1 to 3.6 and 3.0 to 3.7, respectively. Not enough
confidence data was gathered for scenarios (c) and (d) as
students did not report confidence for unmarked scenarios.
There were mild improvement for scenarios (a), (b) and (c),

Figure 6. The change in student knowledge for the concurrency section.
(a), (b), (c), and (d) correspond to the scenarios described in Section IV-1,
and the arrows show the change the counts of wrong, right and no answers
for students which took both the pre- and post-surveys.

Figure 7. The change in student knowledge for the asynchrony vs.
synchrony section. (a), (b), and (c) correspond to the scenarios described
in Section IV-2, and the arrows show the change the counts of wrong, right
and no answers for students which took both the pre- and post-surveys.

but it is not clear why less students were correct on scenario
(d) post module. One potential reason is the fact that as
SALSA uses asynchronous message passing, when messages
are sent they can be received and processed in different
orders than they were sent. Students may have confused this
behavior of SALSA with this scenario. The results show that
the students do have a general understanding of the topic, as
the answers were mostly correct both pre- and post-module.

2) Asynchrony vs Synchrony: Students were asked to
mark which of the following scenarios were examples of
asynchronous communication (as opposed to synchronous

Figure 8. The change in student knowledge for the determinism section.
(a), (b), (c), and (d) correspond to the scenarios described in Section IV-3,
and the arrows show the change the counts of wrong, right and no answers
for students which took both the pre- and post-surveys.

communication):

• (a) Invoking a method on a Java object.
• (b) Sending someone an email and then working on

something else while waiting for the response.
• (c) Hitting the submit button on a webpage, which

updates a database on the web server before displaying
a success webpage.

The second scenario was an example of asynchronous
communication, while the others were not. Figure 7 shows
how the responses of the students changed. For scenario (b),
student confidence increased from 2.5 to 3.7. Interestingly,
teaching a module using SALSA should have highlighted
the difference between object method invocation (as done
in Java) vs. asynchronous message passing (as done in
SALSA), however less students answered scenario (a) cor-
rectly after the module, and more students did not provide an
answer for scenario (b). So while the students who answered
correctly had greatly improved confidence, for other students
either the scenarios were confusing or something went awry
in the course module (perhaps due to the fact that Java
objects can be used within SALSA programs; albeit still
by synchronous method invocation). As with the previous
topic, the students generally had a good understanding of
these topics both pre- and post-module.

3) Determinism: Students were asked to mark which of
the following scenarios were deterministic (as opposed to
non-deterministic):

• (a) Making ten six-sided dice rolls and calculating their
sum.

Figure 9. The change in student knowledge for the distributed vs. shared
memory section. (a), (b), and (c) correspond to the scenarios described in
Section IV-4, and the arrows show the change the counts of wrong, right
and no answers for students which took both the pre- and post-surveys.

• (b) Having two computer processes continuously send
messages between each other for 10 seconds, and
calculating the total number of messages sent.

• (c) Performing Quicksort where the pivot is chosen
randomly, using a random seed.

• (d) Performing Quicksort where the pivot is chosen
randomly, using the same seed.

Scenario (a) and (d) were deterministic, while the others
were not. Student confidence increased from 2.0 to 3.0 for
(a) and 1.8 to 2.8 for (d). However, unlike the previous top-
ics, student confidence was lower, along with the correctness
of their answers both pre- and post-module. This does make
some sense as determinism is less readily apparent in real
life situations as the previous topics. The module improved
scores for scenarios (a), (b) and (c), but decreased answers
for scenario (d). It is not readily apparent why students
would have performed worse in scenario (d), other than
previous to the SALSA module students were programming
quicksort as part of their lab programming assignments
(where random number generation seeding was taught), and
may have forgotten about this during the SALSA module.

4) Distributed vs Shared Memory: Students were asked
to mark which of the following scenarios used distributed
memory, as opposed to those that used shared memory:

• (a) Using software like Dropbox to save copies of
your homework and class materials to a remote cloud
storage service which will sync the same files on your
laptop and desktop in case one breaks.

• (b) Running a parallel mergesort on a computer with
4 processors, all of which have access to the same
memory which stores the array being sorted.

• (c) Two teaching assistants have a stack of papers to
grade. One TA will grade the first half of the papers
and the other TA will grade the other half of the papers.

Figure 10. The change in student knowledge for the concurrency
defects section. (a), (b), and (c) correspond to the scenarios described in
Section IV-5, and the arrows show the change the counts of wrong, right
and no answers for students which took both the pre- and post-surveys.

Scenario (c) is an example of distributed memory, while
the others are not. Student confidence for scenario (c)
decreased from 2.9 to 2.6, and increase for scenario (b)
from 1.8 to 3.1. These results are particularly interesting, as
scenario (c) is the only scenario where student confidence
decreased. This makes the results for scenario (c) not as
bad, as while more students were incorrect, at least they
were less confident about it. However, more students were
wrong about scenario (b) and they were significantly more
confident about it which is a problem. Actors explicitly use
distributed memory and students had to deal with this in
their programming assignments, so it is not quite clear why
the students’ answers changed in this manner.

5) Concurrency Defects: Lastly, students were asked to
mark which of the following were an example of a defective
concurrent system:

• (a) Three philosophers sit at a circular table with three
forks. One for is in between each philosopher. Each
philosopher will attempt to pick up the fork to the left
of them and hold it, while trying to pick up the fork to
the right of them. After a philosopher has both forks
they will eat their meal and put the forks down (so the
other philosophers can pick them up).

• (b) A group of athletes are running in a line around a
track. Every minute, the athlete in the back of the line
will sprint to the front of the line.

• (c) Two robots are coming at each other from opposite
directions down a hall. The first robot is programmed
to move 1 meter to the left if something is in its way.
If something is still in its way it will attempt to move
1 meter to the right. Robot 1 will repeat this left-right
process until it can move forward. The second robot is
programmed to move 1 meter to the right if something
is in its way. If something is still in its way it will move

1 meter to the left. Robot 2 will repeat this right-left
process until it can move forward.

Both scenarios (a) and (c) are defective concurrent sys-
tems, providing examples of potential deadlock and livelock,
respectively. Student confidence increased in scenario (a)
from 2.0 to 3.5 and in scenario (c) from 2.0 to 3.4. Scenario
(a) is the dining philosophers problem, and fixing a dining
philosophers program which resulted in deadlock was the
second SALSA programming assignment in the module, so
the improvement in correct answers is positive result for
this assignment. However, scenario (c) which was presents
an example of livelock (and which was explicitly lectured
on) resulted in an increase in wrong or no answers. While
this is not a positive result, it provides more evidence that
having students actively work on a problem (as opposed to
being lectured on it) does a better job at promoting learning.

V. FUTURE WORK

It became apparent that in developing a survey, instruc-
tions must be very explicit (and perhaps gone over multiple
times) as the students did not mark their confidence for each
scenario, but rather only the ones they marked as an example
of the given topic. In future surveys, this will be addressed
to ensure that the most information can be gathered about
the teaching methods, and also so it can be differentiated
between a student giving a negative answer to a scenario
and a student simply not answering the question at all.
Second, more input on the scenarios presented in the survey
by other teachers could result in scenarios that can more
accurately access a students knowledge and learning. Some
of the scenarios (in particular 3a, 4a, 5b, and 5c) could
also be improved or replaced with ones with more clear
cut answers.

It will also be interesting to try a similar approach
in future courses, using different concurrent program-
ming paradigms and languages, such as OpenMP [5] and
Scala [6], to evaluate their effectiveness in teaching new
computer science students. With a more refined survey, and
investigation in multiple classes, it will be possible to gather
more robust and informative data.

VI. DISCUSSION

Perhaps the most important information to take from this
work is that early programming students do have a basic
understanding of concurrent and distributed programming
topics, without having any formal instruction on them, as
most things in the real world operate concurrently. Second,
and as a warning to those seeking to introduce these topics
into their curriculum, increasing student confidence in a
topic is significantly easier than increasing their actual
knowledge – which can prove dangerous as students can
easily become more sure of their incorrect knowledge.

While the effect of using SALSA for the course module
was only moderately positive, there is reason to believe that

with some changes it could be a very successful method for
introducing concurrent and distributed programming to early
programmers. First, the module only lasted for two weeks,
and while this was sufficient to increase student confidence,
the level of student knowledge was not improved on a similar
level. On the other hand, topics which students directly had
to apply via programming assignments showed the largest
improvement (as in scenario 5a).

This is positive in that it does show that students at this
level can learn and understand these topics – however it
should be noted that some students may still be at the level of
code modification and testing, so they can simply get things
to work without understanding the why of how they worked.
It does mean that more time (especially applied time) must
be devoted to these topics if students are going to understand
them at this level. As such, future examination of this
subject using SALSA and other distributed and concurrent
programming languages or paradigms should involved more
applied programming, to avoid the pitfall of students gaining
confidence than actual knowledge.

ACKNOWLEDGMENT

I would like to thank the students of the fall 2012 class
of Computer Science II at the University of North Dakota
for their patience and enthusiasm in participating in this
research. This work was funded by the NSF/IEEE-TCPP
Curriculum Initiative Early Adopter Program.

REFERENCES

[1] “NSF/IEEE-TCPP Curriculum Initiative on Parallel and Dis-
tributed Computing - Core Topics for Undergraduates,”
http://www.cs.gsu.edu/ tcpp/curriculum/?q=home, accessed:
07/10/2012.

[2] C. Varela, “Worldwide Computing with Universal Actors: Lin-
guistic Abstractions for Naming, Migration, and Coordination,”
Ph.D. dissertation, U. of Illinois at Urbana-Champaign, 2001,
http://osl.cs.uiuc.edu/Theses/varela-phd.pdf.

[3] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,
J. Silver, B. Silverman, and Y. Kafai, “Scratch:
programming for all,” Commun. ACM, vol. 52,
no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592779

[4] G. A. AGHA, I. A. MASON, S. F. SMITH,
and C. L. TALCOTT, “A foundation for actor
computation,” Journal of Functional Programming,
vol. 7, no. 01, pp. 1–72, 1997. [Online]. Available:
http://dx.doi.org/10.1017/S095679689700261X

[5] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and
J. McDonald, Parallel programming in OpenMP. Morgan
Kaufmann, 2000.

[6] P. Haller and M. Odersky, “Scala actors: Unifying thread-based
and event-based programming,” Theoretical Computer Science,
vol. 410, no. 2, pp. 202–220, 2009.

