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Abstract. This paper presents a novel strategy for using ant colony optimization
(ACO) to evolve the structure of deep recurrent neural networks. While versions
of ACO for continuous parameter optimization have been previously used to train
the weights of neural networks, to the authors’ knowledge they have not been used
to actually design neural networks. The strategy presented is used to evolve deep
neural networks with up to 5 hidden and 5 recurrent layers for the challenging
task of predicting general aviation flight data, and is shown to provide improve-
ments of 63% for airspeed, a 97% for altitude and 120% for pitch over previously
best published results, while at the same time not requiring additional input neu-
rons for residual values. The strategy presented also has many benefits for neuro
evolution, including the fact that it is easily parallizable and scalable, and can
operate using any method for training neural networks. Further, the networks it
evolves can typically be trained in fewer iterations than fully connected networks.
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1 Introduction

Neural networks have been widely used for time series data prediction [11, 43]. Un-
fortunately, current popular techniques for designing and training neural networks such
as convolutional and deep learning strategies, popular within computer vision, do not
easily apply to time series prediction. This is in part because the number of input param-
eters is relatively small (compared to pixels within images), the fact they do not easily
deal with recurrent memory neurons, and the goal is prediction, as opposed to classifica-
tion. Even more problematic, these strategies do not help address the rather challenging
problem of determining the best performing structure for those neural networks. Au-
tomated strategies for simultaneously evolving the structure and weights of neural net-
works have been examined through strategies such as NeuroEvolution of Augmenting
Topologies (NEAT) [37] and Hyper-NEAT [38], and while these can evolve recurrent
connections, they require non-trivial modification to evolve the recurrent memory nure-
ons typically used for time series prediction.

Recent work in using neural networks for time series prediction has involved uti-
lizing residuals or lags similar to the Auto-Regressive Integrated Moving Average



(ARIMA) model [42], as done by Khashei et al. [23] and Omer et al. [30]. Other work
has investigated strategies for cooperative co-evolution for Elman recurrent neural net-
works [10, 9], however these strategies involve single parameter time series data such
as the Mackey-Glass, Lorenz and Sunspot data sets.

Ant colony optimization (ACO) [6, 19, 17] is an optimization technique originally
designed for use on discrete problems, with a common example being the Traveling
Salesman Problem [18]. It has since been extended for use in continuous optimization
problems [34, 36, 35, 5, 27, 20], including training artificial neural networks [24, 7, 31,
40, 3]. While ACO has been studied for training artificial neural networks (ANNs), to
the authors’ knowledge there is little work in using ACO to actually design neural net-
works, with the closest being Sivagaminathan et al. using ACO to select input features
for neural networks [33].

This work presents a novel strategy based on ant colony optimization which evolves
the structure of recurrent deep neural networks with multiple input data parameters.
While ant colony optimization is used to evolve the network structure, any number of
optimization techniques can be used to optimize the weights of those neural networks.
Trained neural networks with good fitness will be used to update the pheromones, re-
inforcing connections between neurons that provide good solutions. The algorithm is
easily parallelizable and scalable, using a steady state population of best performing
neural networks to determine when pheromones are incremented, and any number of
worker processes can asynchronously train neural networks generated by the ant colony
optimization strategy.

This algorithm is evaluated using the real world problem of predicting general avi-
ation flight data, and compared to previously best published results for a set of testing
data. For three of the four parameters evaluated (airspeed, altitude, and pitch), this ap-
proach improves significantly on previously published results, while at the same time
not requiring additional input nodes for ARIMA residuals. For the fourth parameter,
roll, the strategy performs worse, however this may be due to the fact that the neural
networks were not trained for long enough. The authors feel that the results provide
a strong case for the use of ant colony optimization in the design of neural networks,
given its ability to find novel and effective neural network topologies that can be easily
trained (apart from the roll parameter which requires further study).

2 Predicting General Aviation Flight Data

General aviation comprises 63% of all civil aviation activity in the United States; cov-
ering operation of all non-scheduled and non-military aircraft [21, 32]. While general
aviation is a valuable and lucrative industry, it has the highest accident rates within civil
aviation [29]. For many years, the general aviation accident and fatality rates have hov-
ered around 7 and 1.3 per 100,000 flight hours, respectively [1]. The general aviation
community and its aircraft are very diverse, limiting the utility of the traditional flight
data monitoring (FDM) approach used by commercial airlines.

The National General Aviation Flight Information Database (NGAFID) has been
developed at the University of North Dakota as a central repository for general aviation
flight data. It consists of per-second flight data recorder (FDR) data from three fleets of



aircraft. As of November 2014, the database stores FDR readings from over 200,000
flights, with more being added daily. It currently stores over 750 million per-second
records of flight data. The NGAFID provides an invaluable source of information about
general aviation flights, as most of these flights are from aviation students, where there
is a wider variance in flight parameters than what may normally be expected within data
from professionally piloted flights.

Having algorithms which can accurately predict FDR parameters would be able to
not only warn pilots of problematic flight behavior, but also be used to predict impend-
ing failures of engines and other hardware. As such, investigating predictive strategies
such as these has the potential to reduce costs for maintaining general aviation fleets,
and more importantly save lives.

3 Previous Results

In previous work, the authors evaluated a suite of feed forward, Jordan and Elman
recurrent neural networks to predict flight parameters [14]. This work was novel in
that to our knowledge, neural networks have not been previously applied to predicting
general aviation flight data. These results were encouraging in that some parameters
such as altitude and airspeed can be predicted with high accuracy, at 0.22% - 0.62%
for airspeed, 0.026-0.08% for airspeed, 0.88% - 1.49% for pitch and 0.5% to 2% for
roll. These neural networks were trained using backpropagation via stochastic gradient
descent, gradient descent from a baseline predictor (which mimicked how deep neural
networks are currently trained by pre-training each layer to predict its input), and with
asychronous differential evolution (ADE). ADE was shown to significantly outperform
both types of backpropagation, provided solutions with up to 70% improvement. It was
also shown that while ADE outperformed backpropagation, it still had trouble training
the larger fully connected Jordan and Elman recurrent neural networks (which provided
the best predictions), motivating further study.

4 Methodology

The ACO based strategy works as follows. Given a potentially fully connected recurrent
neural network – where each node has a potential connection to every node in the sub-
sequent layer and to a respective node in the recurrent layer – each connection between
neurons can be seen as a potential path for an ant (see Figure 1). Every potential con-
nection is initialized with a base amount of pheromone, and the master process stores
the amount of pheromone on each connection. Worker processes receive neural network
designs generated by taking a selected number of ants, and having them choose a path
through the fully connected neural network biased by the amount of pheromone on each
connection. Multiple ants can choose the connections between neurons. Those ant paths
are be combined to construct a neural network design which is sent to worker processes
and trained on the input flights using backpropagation, evolutionary algorithms or any
other neural network training algorithm. The master process maintains a population of
the best neural network designs, and when a worker reports the accuracy of a newly
trained neural network, if it improves the population, the master process will increase



Fig. 1. Ants select a forward propagating
path through neurons randomly based on the
pheromone on each path, assuming a fully con-
nected strategy between the input, hidden and
output layers; and a potential connection from
each hidden node to a respective node in the re-
current layer that is fully connected back to its
hidden layer.

Fig. 2. The server creates neural networks for
the workers to evaluate by combining the paths
selected by a given number of ants. This gen-
erates various Elmann-like neural networks
which have less training complexity than a fully
connected Elman design.

the pheromone on every connection that was in that neural network. The master process
periodically degrades pheromone levels, as is done in the standard ACO algorithm. This
strategy allows the evolution of recurrent neural networks with potentially many hidden
layers and hidden nodes, to determine what design can best predict flight parameters.

5 Results

5.1 Optimization Software, Data and Reproducibility

Given the complexity of examining complex neural networks over per-second flight
data, a package requiring easy use of high performance computing resources was re-
quired. While there exist some standardized evolutionary algorithms packages [2, 8, 41,
25], as well as those found in the R programming language [28, 4] and MATLAB [26],
they do not easily lend themselves towards use in high performance computing envi-
ronments.

This work utilizes the Toolkit for Asynchronous Optimization (TAO), which is used
by the MilkyWay@Home volunteer computing to perform massively distributed evo-
lutionary algorithms on tens of thousands of volunteered hosts [15, 16, 12]. It is imple-
mented in C++ and MPI, allowing easy use on clusters and supercomputers, and also
provides support for systems with multiple graphical processing units. Further, TAO has
shown that performing evolutionary algorithms asynchronously can provide significant
improvements to performance and scalability over iterative approaches [39, 13]. TAO is
open source and freely available on GitHub, allowing easy use and extensibility3, and
the presented ACO strategy has been included in that repository. The flight data used

3 https://github.com/travisdesell/tao



in this work has also been made available online for reproducibility and use by other
researchers4.

5.2 Runtime Environment

All results were gathered using a Beowulf HPC cluster with 32 dual quad-core compute
nodes (for a total of 256 processing cores). Each compute node has 64GBs of 1600MHz
RAM, two mirrored RAID 146GB 15K RPM SAS drives, two quad-core E5-2643 In-
tel processors which operate at 3.3Ghz, and run the Red Hat Enterprise Linux (RHEL)
6.2 operating system. All 32 nodes within the cluster are linked by a private 56 giga-
bit (Gb) InfiniBand (IB) FDR 1-to-1 network. The code was compiled and run using
MVAPICH2-x [22], to allow highly optimized use of this network infrastructure.

5.3 Data Cleansing

The flight data required some cleaning for use, as it is stored as raw data from the
flight data recorders uploaded to the NGAFID server and entered in the database as
per second data. When a FDR turns on, some of the sensors are still calibrating or not
immediately online, so the first minute of flight data can have missing and erroneous
values. These initial recordings were removed from the data the neural networks were
trained on. Further, the parameters had wide ranges and different units, e.g., pitch and
roll were in degrees, altitude was in meters and airspeed was in knots. These were all
normalized to values between 0 and 1 for altitude and airspeed, and -0.5 and 0.5 for
pitch and roll.

5.4 Experiments

As backpropagation was shown to not be sufficient to train these recurrent neural net-
works, particle swarm optimization (PSO) was used to train the neural networks gener-
ated by ACO. Previous work has shown both particle swarm and differential evolution
as being equally effective in training these networks. PSO used a population of 200,
inertia weight of 0.75, and global and local best weights of 1.5 for all runs. PSO was
allowed to train the neural networks for 250, 500 and 1000 iterations.

The ACO strategy was used to train networks with 3, 4, and 5 hidden layers (with
a similar number of recurrent layers), using 4 and 8 nodes per layer and pheromone
degradation rates of 10%, 5% and 1%. The number of ants used was equal to twice the
number of nodes per layer (8 for 4 nodes per layer, and 16 for 8 nodes per layer). Each
combination of settings was run 5 times for each of altitude, airspeed, pitch and roll, for
a total of 1080 runs.

Each run was done allocating 64 processes across 8 nodes, and was allowed to train
for 1000 evaluations of generated neural networks. Runs with 250 PSO iterations took
around 30 minutes, 500 PSO iterations took around 1 hour, and 1000 PSO iterations
took around 2 hours.

4 http://people.cs.und.edu/∼tdesell/ngafid releases.php



All runs were done on flight ID 13588 from the NGAFID data release. The neural
networks were trained for individual output parameters, as tests have shown that try-
ing to train for multiple output parameters simultaneously performs very poorly, with
neither backpropagation or evolutionary strategies being able to find effective weights.

5.5 ACO Parameter Setting Analysis

Figure 3 presents the results of the parameter sweep. In general, there was a strong cor-
relation between increased PSO iterations and the best fitnesses found. Across all runs,
4 nodes per layer performed the best, and apart from altitude, 5 hidden layers performed
the best. There did not appear to be a strong trend for the pheromone degradation rate.

Fig. 3. Minimum, maximum and average fitness (mean average error) given the different ACO
input parameters. Fitness values were averaged over each run with the parameter specified in
the x-axis. Lower fitness is better. PSO is the number of PSO iterations, PDR is the pheromone
degradation rate, NHL is the number of hidden layers, and NPL is the number of nodes per layer.



5.6 Best Found Neural Networks

Figure 4 displays the best recurrent neural networks evolved by the ACO strategy. For
airspeed, pitch and roll, the best networks were the deepest – with 5 hidden and recur-
rent layers (although all nodes were not used). They also displayed interesting recurrent
topologies, significantly different than the standard Jordan and Elman recurrent neural
networks found in literature. The best evolved neural network for altitude was also in-
teresting in that it completely ignored roll as an input parameter. The evolved networks
also show some slight similarity to sparse autoencoders, with some of the middle layers
being constrained to less nodes and connections.

Fig. 4. The best found evolved neural networks across the 1080 runs performed. Input neurons
are in blue, recurrent neurons are in pink, hidden neurons are in green, and the output neuron is
in purple.

5.7 Comparison to Prior Results

The performance of the best evolved neural networks was compared to the previously
best published results for flight ID 13588, which were an Elman network with 2 input
lags and 1 hidden layer for airspeed; a Jordan recurrent neural network with 2 input lags
and 0 hidden layers for altitude; an Elman network with 1 set put input lags and 1 hidden
layer for pitch; and an Elman network with 2 input lags and 1 hidden layer for roll. In
addition, results for a random noise estimator (RNE), which uses the previous value
as the prediction for the next value, prediction(ti+1) = ti, were given as a baseline
comparison, as it represents the best predictive power that can be achieved for random
time series data. If the neural networks did not improve on this, then the results would
have been meaningless and potentially indicate that the data is too noisy (given weather
and other conditions) for prediction.

Additionally, the RNE provides a good baseline in that it is easy for neural networks
to represent the RNE: all weights can be set to 0, except for a single path from the path



Fig. 5. The best neural networks trained on Flight #13588 were used to predict the parameters of
Flight #17269. The actual values are in green and the predictions are in red. Altitude and airspeed
were predicted with very high accuracy, however pitch and roll are more challenging. Time steps
are in seconds, and parameters are normalized over a range of 1. Predicted and actual airspeed
are indistinguishable at the scale of the figure and completely overlap.



from the corresponding input node to the output node having weights of 1. Because of
this, it also provides a good test of the correctness of the global optimization techniques,
at the very least they should be able to train a network as effective as a RNE; however
local optimization techniques (such as backpropagation) may not reach this if the search
area is non-convex and the initial starting point does not lead to a good minimum.

Airspeed
Method 13588 15438 17269 175755 24335
ti+1 = ti 0.00512158 0.00316859 0.00675531 0.00508229 0.00575537
Prior Best 0.00472131 0.00250284 0.00656991 0.00465581 0.00495454
Best ACO 0.00279963 0.00145748 0.00433578 0.0028908 0.00305361

Altitude
Method 13588 15438 17269 175755 24335
ti+1 = ti 0.00138854 0.00107117 0.00200011 0.00137109 0.00192345
Prior Best 0.000367535 0.000305193 0.000895711 0.000399587 0.000485329
Best ACO 0.0002183 0.000160932 0.000353502 0.000224827 0.000249197

Pitch
Method 13588 15438 17269 175755 24335
ti+1 = ti 0.0153181 0.010955 0.0148046 0.0161251 0.0173269
Prior Best 0.014918 0.0100763 0.0147712 0.01514 0.0160249
Best ACO 0.00606664 0.00498241 0.00837594 0.005864 0.00733882

Roll
Method 13588 15438 17269 175755 24335
ti+1 = ti 0.0158853 0.00604479 0.0204441 0.012877 0.0192648
Prior Best 0.0154541 0.00587058 0.0206536 0.0127999 0.0182611
Best ACO 0.0155934 0.00900393 0.0237235 0.0151416 0.0200261

Fig. 6. Comparison of the best found ACO evolved neural networks to the random noise estimator
(ti+1 = ti) and the previously published best found results. The mean average error for the neural
networks trained on flight ID 13588 is given when they are tested on four other flights.

Figure 6 compares the best ACO results to the RNE and the previous best trained
neural network for flight ID 13588. Results are the Mean Average Error (MAE) of the
prediction to the actual value. As results were normalized over a range of 1, the MAE
is also the percentage error. These neural networks and the RNE were also run on four
other flights, IDs 15438, 17269, 175755 and 24335 from the NGAFID data release. On
average compared to previous best results, the ACO evolved neural networks provided
a 63% improvement over airspeed, a 97% improvement over altitude and a 120% im-
provement over pitch, without requiring additional input neurons for lag values. Given
the fact that these neural networks also performed strongly on all test flights, these re-
sults are quite encouraging.

However, as in previous work, the roll parameter remains quite difficult to predict,
and the ACO evolved neural networks actually resulted in a 14.5% decrease in predic-
tion accuracy, performing worse than the RNE. Given the depth and complexity of the
evolved neural networks, there is justifiable concern for over training, which may be



the case for this evolved network. Another reason for the poor performance of the ACO
evolved neural networks may be due to the limited amount of training for each gener-
ated neural network. Previous results had the neural networks be trained for 15,000,000
objective function evaluations, while the best performing ACO evolved neural networks
were trained with a maximum of 200,000 objective function evaluations (1000 iterations
with population size 200). Given the strong correlation between increased PSO itera-
tions and best fitness found for roll, it is also possible that the neural networks were not
trained long enough for the roll parameter. Lastly, it could be that even though the input
lag nodes were not required for the other parameters, they may be required for roll, or
stand to provide even further prediction improvements. A further study of this stands
for future work.

6 Conclusions and Future Work

This paper presents and analyzes a novel strategy for using ant colony optimization for
evolving the structure of recurrent neural networks. The strategy presented is used to
evolve deep neural networks with up to 5 hidden and 5 recurrent layers for the challeng-
ing task of predicting general aviation flight data, and is shown to provide improvements
of 63% for airspeed, a 97% for altitude and 120% for pitch over previously best pub-
lished results, while at the same time not requiring additional input neurons for residual
values. Finding good predictions for the roll parameter still remains challenging and an
area of future study.

Further, this work opens up interesting opportunites in applying ant colony opti-
mization to neuro evolution. In particular, the authors feel that the approach could be
extended to evolve neural networks for computer vision, by allowing ants to also select
what type of activation function each neuron has (e.g., ReLU, or max pooling). It may
also be possible to utilize this strategy to further improve convolutional layers in neural
networks. Additionally, this work only tested neural networks with a recurrent depth of
one, where each recurrent node is immediately fed back into the neural network in the
next iteration. It may be possible to use this strategy to generate neural networks with
deeper memory, where recurrent nodes can potentially feed back into a deeper layer of
recurrent nodes, and so on.

Finally, the National General Aviation Flight Database (NGAFID) provides an ex-
cellent data source for researching evolutionary algorithms, machine learning and data
mining. Further analysis of these flights along with more advanced prediction methods
will enable more advanced flight sensors, which could prevent accidents and save lives;
which is especially important in the field of general aviation as it is has the highest ac-
cident rates within civil aviation [29]. As many of these flights also contain per-second
data of various engine parameters, using similar predictive methods it may become pos-
sible to detect engine and other hardware failures, aiding in the maintenance process.
This work presents a further step towards making general aviation safer through ma-
chine learning and evolutionary algorithms.
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