
Towards Modeling a Complex Geological Simulation
David Apostal Sara Faraji Jalal Apostal

University of North Dakota University of North Dakota
Grand Forks, ND 58202 USA Grand Forks, ND 58202 USA

david.apostal@und.edu sara.farajijalal@und.edu

Ron Marsh Travis Desell
University of North Dakota University of North Dakota

Grand Forks, ND 58202 USA Grand Forks, ND 58202 USA
rmarsh@cs.und.edu tdesell@cs.und.edu

ABSTRACT
Data motion is a significant factor affecting runtime per-

formance. Data-intensive applications are subject to the ef-
fects of data motion more so than other applications. This re-
search uses abstract machine models to calculate runtime per-
formance expectations for a geological simulation program.
The models are based on the time to execute double-precision
floating-point instructions and the time to load operands and
store results for those operations. Two extremes of cache
memory are considered and provide expected bounds for the
program’s runtime performance. In one case, cache memory
is unlimited; once a datum is read into cache, it is always
available. In the other case, the cache is extremely limited
and each datum is removed from cache memory after it is
used once. A model for inter-process communication is also
incorporated.

This research shows that simple models can provide
accurate expectations for runtime performance for some
operations. For one operation studied herein the observed
runtime performance only exceeded the expected upper
bound in one case by 2%. The models can become less
accurate if memory utilization is high. This may occur if
only one core is used or if a change to an algorithm results in
larger data structures.

Keywords: abstract machine, performance analysis,
conduction, heat flow

1. INTRODUCTION
One use of geothermal energy is in the mining of hydrocar-

bon deposits. The geothermal energy can replace natural gas
for heating water used during the extraction process.

Heat flow data can be used to estimate the subsurface tem-
peratures of layers of rock with known thermal conductivity.

SpringSim-HPC, 2016 April 3-6, Pasadena, CA, USA
c©2016 Society for Modeling & Simulation International

(SCS)

Subsurface temperature can be used to create maps that
describe the extent, depth, and temperature of geothermal
resources. The maps help to identify regions with potential
for geothermal exploitation.

Simulations associated with the study of geothermal re-
sources can be data intensive applications. A well-established
geological model has been used to measure heat flow beneath
the Earth’s surface [5][6]. Arc, a software implementation of
the geological model, provides the basis for the abstract ma-
chine models in this study.

Arc was originally written in Fortran. The Fortran code was
ported to C++ and additional features were added as part of
a student project. The Arc software can measure heat flow
across a two- or three-dimensional rectilinear grid of temper-
atures. A variation of the C++ version of the program was
created to run on distributed memory parallel computers.

Both the desktop and parallel versions of Arc use a finite
differencing approach to calculate heat flow during a period
of simulation. Given the current temperature at a point, the
program calculates what the temperature will be after a time
step. A point’s next temperature is stored in a separate grid
data structure so that the point’s current temperature can be
used as input when calculating the next temperatures for other
near-by points. This process is performed on all points in the
model repeatedly for the duration of the simulation.

Recently it was observed that some nodes in the parallel
version of Arc were idle while other nodes completed compu-
tations. The code was measured and changes were made until
there was an improvement in the runtime performance. As a
result the Arc program was modified to use non-blocking MPI
point-to-point communication instead of blocking MPI func-
tion calls. This resulted in a performance increase of 28%,
depending on environment [2]. However, there was no analy-
sis to determine how fast the program or parts of it might be
able to run. Simple abstract machine models can provide per-
formance expectations for key operations, and help develop-
ers make effective use of their time when tasked with finding
performance gains.

2. RELATED WORK
Effective use of powerful high performance parallel com-

puter systems requires paying attention to many parts of the
application. This can be done with fairly simple model-based
analysis that provides a performance expectation. Models can
be developed to provide expectations for how much time an
operation might take. When compared against observed run-
times, models can help to identify performance bottlenecks.
Models can also be developed based on proposed algorithms
or code changes to help predict the performance impact of
changes.

Hager et al. used simple models to predict performance and
power [7]. They constructed a model to predict the energy
required to solve a problem and then developed guidelines
for energy-efficient execution of parallel program.

Zhong et al. modeled the performance of scientific pro-
grams in order to execute them on hybrid (multicore and
GPU) platforms [12]. Algorithms based on the models
were shown to support data partitioning in heterogeneous
distributed-memory systems.

Simple models for sparse matrix-matrix multiplication
were used by Scharpff et al. in [9].

Ang et al. used abstract machine models to explore ar-
chitectures that may lead to exascale computing levels [1].
The models help hardware architects and software developers
communicate and study new approaches that minimize data
movement.

3. APPROACH
In order to understand the performance of the parallel Arc

geological program, two simple models based on the exist-
ing code were created. An initial model was created to give
an expectation of the time required to calculate the tempera-
ture differences between a grid point and its neighbors. This
provided some guidance when developing the model of con-
ductive heat flow. The conductive model was built upon the
temperature difference model. Both models were based on
the time cost of floating-point operations, the time to load
operands to those operations, and the time to write results to
memory.

The models do not include several items that are present
in the existing code. Overhead associated with loops, calls
to subroutines, and conditional statements have been omitted
from the models. Also, the cost of measuring times of certain
operations was removed from results.

Two variations of the models were created. A limited cache
memory model provided an expected upper bound on the
times for calculating temperature difference and conductive
heat flow. With limited cache data would be flushed from
cache in order to make room for the data required by the
next calculation. Also, an unlimited cache memory model
provided a lower bound on the expected performance of each

operation.

3.1. Modeling Temperature Difference
Heat flows from warm areas to cooler areas. In Arc the tem-

peratures above, below, and to each side in a 2-D grid affect
the conduction at a given point. A stencil for temperature dif-
ference at one point is shown in Figure 1. The center point is
dependent on its neighboring points. The difference in tem-
perature between two points is adjusted by the conductivity
and heat production at each point and the distance between
the points. In all there are 10 floating-point operations in the
current code to calculate temperature difference at one grid
point. In a 3-D grid, a stencil for temperature difference in-
cludes points from adjacent slices.

Figure 1. Heat flow at one grid point in a 2-D grid is based
on its temperature difference from four neighboring points.

Reading the operands for those 10 floating-point operations
and writing the results are also parts of the abstract model
for temperature difference. These are examples of data move-
ment, an important aspect to modeling performance. Two ab-
stract machine models were considered. One model has un-
limited cache memory; if a grid point is loaded into cache
as part of a temperature difference calculation, that point’s
temperature will remain in cache memory until the program
ends. The other model has extremely limited cache memory
where no data remains in cache after it is used to calculate a
temperature difference.

Assuming unlimited cache memory, the geological simula-
tion code requires on average one double-precision (8-bytes)
read operation for each point in the grid. Also, the next tem-
perature of a point is written two times in the Arc conduction

code. In total there are three double-precision read or write
operations.

A worse-case scenario would be if the data for calculating
temperature differences were flushed from cache immediately
after the temperature difference at a point had been calculated
and written to the next temperature grid. In this situation there
would be five double-precision reads for the point in question
plus two stores to the next temperature grid. This scenario
requires 7 double-precision read or write operations.

3.2. Modeling Conduction
The conduction model builds on the model for tempera-

ture difference. When calculating conduction, the difference
in temperature between a point and its neighbors is adjusted
by conductive and radioactive heat production properties and
the distances between points. In all there are 37 floating-point
operations in the current code to calculate conduction at one
grid point. However, the memory access pattern for conduc-
tion is more complicated than the stencil shown previously.
With unlimited cache memory there are seven read opera-
tions and two write operations. With limited cache there are
23 reads and two write operations.

In fact, the 37 floating-point operations and nine or 25 I/O
operations only applies to interior points of the grid. Points at
the four corners are dependent on only two neighbor points,
and require only 22 floating-point operations. The other non-
corner edge points are dependent on three neighbors, and re-
quire 30 floating-point opertions. There are also reductions
in the number of I/O operations for these two sets of points.
However, in this study the modeling is intended to give a gen-
eral expectation of performance and not a precise estimate.
Therefore, the 37 floating-point operations with nine or 25
I/O operations is acceptable.

3.3. Modeling Inter-process Communication
When Arc is run with using parallel processes, the program

divides the grid as evenly as possible among the processes.
Each process calculates conductivity for a subset of the grid
points. Consider a grid with 1000 rows. If there are two pro-
cesses working together, each process will calculate conduc-
tion for 500 rows. If there are four processes, each will work
on 250 rows. However, if there are 16 processes, the first 15
processes will work on 63 rows and the last process will work
on the remaining 55 rows. Arc uses asynchronous MPI mes-
saging to exchange data among pairs of processes.

With parallel processes conduction for some grid points de-
pends on temperature data managed by another process. In
other words the stencil crosses the process boundary. Pro-
cesses must exchange rows of data with their neighboring
process or processes. With just two proesses and a 1000 row
grid, the first process will send its last row (row 500) to the
second process; the second process will send its first row (row

501) to the first process. This is called a halo exchange. With
four or more processes the first and last process exchange halo
rows with their one neighbor process. The middle processes
must exchnge data with two neighbor processes.

4. EXPERIMENTAL ENVIRONMENT
The programs used in this work were run on the Stam-

pede supercomputer. Each Stampede compute node includes
two Intel Xeon E5-2680 2.7 GHz processors. The nodes have
32 GB of main memory and 20240 MB of cache memory
according to the /proc/cpuinfo file on a compute node. The
Stampede nodes run CentOS 6.3 and are connected by an
FDR Infiniband network. The Extreme Science and Engineer-
ing Discovery Environment [10] project provided access to
Stampede.

Programs were compiled with Intel compiler version
15.0.2. MPI programs used Intel MPI (impi) version 5.0.2.
Unless otherwise noted, the compiler options used were -O3
and -xHost. The O3 option is recommended for applications
that have loops that heavily use floating-point calculations
and process large data sets. The xhost option to the Intel com-
piler enbles the highest level of vectorization available on
the processor. In the case of the Intel Xeon (Sandy Bridge)
processors in Stampede, Streaming SIMD Extensions (SSE),
SSE2, SSE3, SSE4.1, SSE4.2, and Advanced Vector eXten-
sions (AVX) are all available [3].

The better-case and worse-case performance models are
functions of the time for a floating-point operation (c) and
the time for read (r) or write (w) operations. The number of
floating-point, read, and write operations determines the per-
formance expectation for each model.

The values for c, r, and w were determined from the Stam-
pede supercomputer. The inverse of the processor frequency
was used for the value of c. The Xeon E5 processors on
Stapmede run at 2.7 GHz. Therefore, c = 3.7e-10 seconds. A
turbo mode for the E5 processors may be available depending
on factors including workload, the number of running cores,
the estimated power consumption, and the processor temper-
ature. If the Stampede processors ran at full turbo mode (3.5
GHz), then c would equal 2.86e-10 seconds.

A well-known benchmark program was used to test if the
inverse of processor frequency was reasonable for estimating
the time for floating-point operations. The LINPACK bench-
mark program solves a system of linear equations. Over 97%
of the instructions in the two main subroutines are floating-
point add or multiply operations [4]. The source code [11]
was compiled with -O3 and -xHost options and was run on
a single core of a Stampede compute node using a 200x200
matrix. The average of the KFLOPS reported by the bench-
mark was 2,916,673.486 KFLOPS. This is roughly 3.43e-10
seconds per floating-point operation. The inverse of processor
frequency estimate is about 1.08x slower than the LINPACK

benchmark. A comparison of LINPACK performance and the
”inverse of processor frequency” models for the Xeon E5 and
E5 Turbo Mode is shown in figure 4.

Figure 2. The inverse of CPU frequency is a close approxi-
mation of the LINPACK results.

The values for r and w can be derived from a memory
bandwidth benchmark like STREAM. The STREAM bench-
mark provides a measure of the sustainable memory band-
width over large arrays of double-precision data [8].

The arrays are set to a length that is at least four times the
size of the largest cache. This ensures that the results are re-
flective of sustained memory access, including cache misses,
and not sustained cache access. The STREAM Copy kernel
reads a data element value from one array and writes the value
to another array at the same index as shown in Algorithm 1.

for j← 0 to N do
c[j]←a[j]

end
Algorithm 1: The STREAM Copy kernel algorithm

The STREAM benchmark was compiled arrays with 20
million double-precision elements. This is more than large
enough for a Stampede compute node’s largest cache size of
20480KB. The observed bandwidth on Stampede was 7665.4
MB/s on a single core. That is the data transfer rate. A single
r or w is an operation on a double-precision (8-bytes) datum.
Therefore, r = w = 2.09e-9 seconds. This may be found by:

1. Convert to bytes per second,

2. Convert to doubles per second,

3. Divide by two,

4. Invert the result.

5. RESULTS
The Arc simulation was run with an input file containing

1000 x 60 data points. The runtime measurements started af-
ter the data file was read. The program simulated 20 million
years with each iteration taking 10,000 years. Runtime per-
formance data was gathered using from one to 16 MPI tasks
on the cores of a single Xeon E5 node. With one core the
number of temperature difference or conduction operations is
120,000,000. The number of operations decreases by half as
the number of cores doubles. All observed performance run-
time results are the averages of five runs.

5.1. Temperature Difference Models
The abstract machine model for temperature difference

with unlimited cache memory is in Equation 1. Using (1) a
temperature difference operation for a single grid point might
take 9.97E-09 seconds. The total time for conduction using a
single core is expected to be 1.196 seconds.

Time = 10c+ r+2w (1)

The abstract machine model for temperature difference us-
ing limited cache memory is in Equation 2. Using (2) a tem-
perature difference operation for a single grid point might
take 1.83E-08 seconds. The total time for conduction is ex-
pected to be 2.196 seconds when using one Stampede core.

Time = 10c+5r+2w (2)

Figure 3. The two models almost always provide upper and
lower performance bounds for the Arc temperature difference
operations.

Figure 3 shows the relative differences between the ob-
served temperature difference results and the models with un-
limited and restricted cache memory. Table 1 shows the ob-
served runtimes for temperature difference operations exceed

Table 1. The details of the observed runtimes and expected
performances for the temperature difference operation. All
times are in seconds.

Cores Unlimited Model Observed Limited Model
1 1.196 2.250 2.196
2 0.598 0.820 1.098
4 0.299 0.397 0.549
8 0.150 0.222 0.275

16 0.075 0.094 0.137

the limited cache model by 2% when using a single core. All
other observed runtimes are between the expected bounds of
the unlimited and limited cache memory models.

5.2. Conduction Models
The abstract machine model for conduction with unlimited

cache memory is in Equation 3. Using (3) a conduction calcu-
lation for a single grid point can be expected to take 3.29E-8
seconds. Using a single core to perform Arc conductions for
2,000 iterations across 60,000 grid points might take 3.948
seconds.

Time = 37c+7r+2w (3)

The abstract conduction model with limited cache mem-
ory is in Equation 4. Using (4), a single conduction operation
might take 6.59E-8 seconds. Using the limited model for con-
duction 120,000,000 times on Stampede can be expedted to
take 7.908 seconds.

Time = 37c+23r+2w (4)

Figure 4. The two models almost always provide upper and
lower performance bounds for the Arc temperature difference
operations.

Table 2. The details of the conduction runtime and expected
performances before any changes to the code. All times are
in seconds.

Cores Unlimited Model Observed Limited Model
1 3.948 8.96 7.908
2 1.974 4.06 3.954
4 0.987 2.02 1.977
8 0.494 1.01 0.989

16 0.247 0.50 0.494

Figure 4 shows the relative performance of the conduction
runtimes and the two variations of the conduction model. Ta-
ble 2 shows that the observed runtimes for the conduction
operations are all outside of the expected bounds of the un-
limited and limited cache memory models. The observed run-
time exceeded the limited cache model by 13% when using a
single core. For all other observations the expectation of the
limited cache model is exceeded by 3% or less.

5.3. Inter-process Communications
A simple model using latency, bandwidth, and message

size can provide an expectation for inter-process communi-
cation. Equations 5 shows this model.

TransmissionTime = latency+ size÷bandwidth (5)

Although information on latency and bandwidth for Stam-
pede is not readily available, it is possible to calculate these
values. All that is needed is a simple ping-pong program that
measures the time required to send and receive a message be-
tween two processes. The program is rerun using increasingly
larger messages. As with the geology simulation program, the
ping-pong program uses non-blocking MPI communication
functions.

With the times that were measured from the ping-pong test
using different sized messages, one can calculate a best-fit re-
gression line. The inverse of the slope of the line is the band-
width. The value for latency comes from the time to send and
receive a message of size 0 bytes.

A bandwidth of 3.6 GB/s for Stampede was calculated us-
ing the ping-pong data in Table 3 and Figure 5. The latency
for Stampede was found to be 1.41e-6 seconds.

Using (5) one can calculate the expected time to send a sin-
gle message. However, processes running Arc exchange halo
data on every iteration of the program. In fact, Arc sends an 8-
byte message 60 times per iteration (one message per column
value). This costs 1.393344e-5 seconds. For 2000 iterations,
the total cost of a single halo exchange is 0.0279 seconds.

5.4. Changes to the Code
There were two characteristics of the code that stood

out during the development of the conduction performance

Table 3. The ping-pong results with different message sizes.
Message Size Time (s)

0 1.41E-06
4 2.13E-06

16 2.15E-06
64 2.74E-06

256 2.66E-06
1024 3.85E-06
4096 7.48E-06

16384 1.05E-05

Figure 5. Results of ping-pong test on Stampede for differ-
ent message sizes.

model. Each may be contributing to the runtime performance
observed.

First, the next temperature array for each grid point was
written to memory three times per conduction operation in
different subroutines. If this write is going through to main
memory rather than just updating the cache memory, then that
may account for some of the runtime performance. A tempo-
rary next temperature scalar variable was created and used in
all but the final update to the next temperature array.

It was also observed that values associated with conduc-
tivity and heat production were accessed indirectly through
lookup tables. It was thought that these were artifacts of at-
tempts to minimize the size of the input file. The file input
process was modified so that these values would be accessible
without using lookup tables. This increased the total memory
required by the program. Equations 6 and 7 show the updated
best-case and worst-case conduction models.

Time = 37c+20r+w (6)

Time = 37c+5r+w (7)

The conduction runtime results after making changes to the
code are shown in Figure 6 and Table 4. It appears that the

code changes improved performance in all cases except when
a single process was used.

Figure 6. Observed and modeled performance of conduc-
tion after code changes.

Table 4. The details of the observed runtime and modeled
performances after changes to the code.

Cores Unlimited Model Observed Limited Model
1 3.144 8.69 6.912
2 1.572 3.92 3.456
4 0.786 1.94 1.728
8 0.393 0.97 0.864

16 0.197 0.47 0.432

The performance of the Arc conduction operation im-
proved between 3% to 6% after the code was changed. How-
ever, Table 4 shows that the observed runtimes for conduc-
tion operations are still all outside of the expected bounds
provided by the two abstract machine models. The observed
performance is between 26% (one core) and 9% (16 cores)
slower than the limited memory abstract machine.

A possible performance improvement was also identified
in the MPI halo exchange code. As mentioned previously, the
code sends 60 eight-byte messages for each iteration. Consid-
ering again Equation (5), latency is significantly larger than
the bandwidth factor. So, the cost of latency is included in
each PMI message. If a single message of 60 eight-byte val-
ues is sent, the cost of latency is reduced significantly. With
this improvement the cost of sending a single message with
60 eight-byte values should be 3.6344e-7. For 2000 iterations,
the total cost of a halo exchange with one other process is
0.000727 seconds.

6. DISCUSSION/CONCLUSION
In this work we considered two major operations within the

Arc geological simulation program. Abstract machine models
based on temperature difference and conduction operations
were created and evaluated for accuracy. The runtime perfor-
mance of the temperature difference and conduction opera-
tions were very close to the expectations of the limited mem-
ory models. The runtime performances exceeded the limited
memory expectation by 2% and 13% respectively, for the
temperature difference and conduction operations when us-
ing one core.

After modifying the conduction operation and remov-
ing memory accesses, the simulation performance improved
slightly (from 3% to 6%). A side effect of these changes was
that more memory was required for the conduction data struc-
tures. The observed times were approximately 1.26 to 1.09
times slower than the expected times of the limited memory
model. For such simple models, these differences were con-
sidered acceptable.

These were combined with a simple model for inter-
process communication. The models combined to give an ex-
pectation of how long the geological simulation might run. In
fact, the simulation ran much slower than the combined mod-
els. More analysis of the inter-process communication code is
needed to understand how to improve the networking model.

Data motion tends to dominate the performance of the con-
duction operation and the entire Arc simulation. However, it
may be possible to improve the accuracy of the models. The
simple models in this study only considered the number of
loads and stores in an operation. The models were less ac-
curate when using just one core or when more memory was
required by Arc. Future work will attempt to understand the
extent, if any, that memory utilization affect runtime perfor-
mance. It may be possible to make the models more accurate
when running on systems with different amounts of memory
or when the size of the data grid changes.

REFERENCES
1. J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan,

J. Cook, D. Donofrio, S. D. Hammond, K. S. Hemmert,
S. M. Kelly, H. Le, V. J. Leung, D. R. Resnick, A. F. Ro-
drigues, J. Shalf, D. Stark, D. Unat, and N. J. Wright.
Abstract machine models and proxy architectures for ex-
ascale computing. In Hardware-Software Co-Design for
High Performance Computing (Co-HPC), 2014, pages
25–32, Nov 2014.

2. David Apostal, Kyle Foerster, Travis Desell, and Will
Gosnold. Performance improvements for a large-scale
geological simulation. In Procedia Computer Science,
volume 29, pages 256–269, June 2014. 14th International
Conference on Computational Science (ICCS 2014).

3. Intel Corp. Intel 64 and IA-32 Architectures Optimization
Reference Manual, September 2015.

4. Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet.
The linpack benchmark: past, present and future. Con-
currency and Computation: Practice and Experience,
15(9):803–820, 2003.

5. W.D. Gosnold. Basin-scale groundwater flow and ad-
vective heat flow: An example from the northern great
plains. Geothermics in Basin Analysis, pages 99–116,
1999.

6. Will Gosnold, Jacek Majorowicz, Rob Klenner, and
Steve Hauck. Implications of post-glacial warming for
northern hemisphere heat flow. Transactions of the
Geothermal Resources Council, page 12, 2011.

7. Georg Hager, Jan Treibig, Johannes Habich, and Ger-
hard Wellein. Exploring performance and power proper-
ties of modern multi-core chips via simple machine mod-
els. Concurrency and Computation: Practice and Expe-
rience, 28(2):189–210, 2016.

8. John D. McCalpin. Memory bandwidth and machine
balance in current high performance computers. IEEE
Computer Society Technical Committee on Computer Ar-
chitecture (TCCA) Newsletter, pages 19–25, December
1995.

9. T. Scharpff, K. Iglberger, G. Hager, and U. RÃ 1
4 de.

Model-guided performance analysis of the sparse matrix-
matrix multiplication. In High Performance Computing
and Simulation (HPCS), 2013 International Conference
on, pages 445–452, July 2013.

10. John Towns, Timothy Cockerill, Maytal Dahan, Ian Fos-
ter, Kelly Gaither, Andrew Grimshaw, Victor Hazlewood,
Scott Lathrop, Dave Lifka, Gregory D. Peterson, Ralph
Roskies, J. Ray Scott, and Nancy Wilkins-Diehr. Xsede:
Accelerating scientific discovery, Sept.-Oct. 2014.

11. Bonnie Toy, Will Menninger, and Jack Dongarra. Lin-
pack benchmark (c source code), 1994. available at:
http://www.netlib.org/benchmark/linpackc.new.

12. Ziming Zhong, V. Rychkov, and A. Lastovetsky. Data
partitioning on heterogeneous multicore and multi-gpu
systems using functional performance models of data-
parallel applications. In Cluster Computing (CLUSTER),
2012 IEEE International Conference on, pages 191–199,
Sept 2012.

