
Developing a Volunteer Computing Project to
Evolve Convolutional Neural Networks and Their

Hyperparameters
Travis Desell

Department of Computer Science
University of North Dakota

Grand Forks, North Dakota 58202
Email: tdesell@cs.und.edu

Abstract—This work presents improvements to a neuro-
evolution algorithm called Evolutionary eXploration of Augment-
ing Convolutional Topologies (EXACT), which is capable of evolv-
ing the structure of convolutional neural networks (CNNs). While
EXACT has multithreaded and parallel implementations, it has
also been implemented as part of a volunteer computing project
at the Citizen Science Grid to provide truly large scale computing
resources through over 5,500 volunteered computers. Improve-
ments include the development of a new mutation operator, which
increased the evolution rate by over an order of magnitude and
was also shown to be significantly more reliable in generating new
CNNs than the traditional method. Further, EXACT has been
extended with a simplex hyperparameter optimization (SHO)
method which allows for the co-evolution of hyperparameters,
simplifying the task of their selection while generating smaller
CNNs with similar predictive ability to those generated with fixed
hyperparameters. Lastly, the backpropagation method has been
updated with batch normalization and dropout. Compared to
previous work, which only achieved prediction rates of 98.32% on
the MNIST handwritten digits testing data after 60,000 evolved
CNNs, these new advances allowed EXACT to achieve prediction
rates of 99.43% within only 12,500 evolved CNNs – rates which
are comparable to some of the best human designed CNNs.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have become a
highly active area of research due to strong results in areas
such as image classification [1], [2], video classification [3],
sentence classification [4], and speech recognition [5], among
others. Significant progress has been made in the design
of CNNs, from the venerable LeNet 5 [2] to more recent
large and deep networks such as AlexNet [1], VGGNet [6],
GoogleNet [7] and ResNet [8]. However, less work has been
made in the area of automated design of CNNs.

There exist a number of neuroevolution techniques capable
of evolving the structure of feed forward and recurrent neural
networks, such as NEAT [9], HyperNEAT [10], CoSyNE [11],
as well as ant colony optimization based approaches [12], [13].
However, these have not yet been applied to CNNs due to the
size and structure of CNNs, not to mention the significant
amount of time required to train one.

Koutnı́k et al.have published a work titled Evolving Deep
Unsupervised Convolutional Networks for Vision-Based Rein-
forcement Learning [14], however in this work the structure of

the CNN used was held fixed while only a small recurrent neu-
ral network controller (which takes output from the CNN) was
evolved using the CoSyNE [11] algorithm. Zoph et al. [15]
have a yet to be published work which uses a recurrent neural
network trained with reinforcement learning to maximize the
expected accuracy of generated architectures on a validation
set of images. However, this approach is gradient based and
generates CNNs by layer, with each layer having a fixed filter
width and height, stride width and height, and number of
filters.

Highlighting the cutting edge nature of this topic, recent
related preprints have been submitted to arXiv.org. Xie
et al. propose a Genetic CNN method which encodes CNNs
as binary strings [16], however they only evolve structure of
convolution operations between pooling layers, and keep the
filter sizes fixed. Miikkulainen et al. have proposed CoDeep-
NEAT, which is also based on NEAT with each node acting
as an entire layer, with the type of layer and hyperparameters
being co-evolved [17]. However, connections within layers are
fixed depending on their type without arbitrary connections.
Real et al., have also evolved image classifiers on the CIFAR-
10 and CIFAR-100 datasets in work most close to this [18].
They also use a distributed algorithm to evolve progressively
more complex CNNs through mutation operations, and handle
conflicts in filter sizes by reshaping non-primary edges with
zeroth order interpolation.

This work presents advances to the Evolutionary eXplo-
ration of Augmenting Convolutional Topologies (EXACT),
which can evolve CNNs of arbtrary structure, filter and feature
map size. Due to high computational demands, it has been
implemented as part of the Citizen Science Grid1, a Berkeley
Open Infrastructure for Network Computing (BOINC) [19]
volunteer computing project. Advances include an add node
mutation operation which significantly improves evolution
speed; simplex hyperparameter optimization (SHO), which co-
evolves hyperparameters; and improvements to the backprop-
agation algorithm used. Using the MNIST handwritten digits
dataset [20] as a benchmark, over 5,500 volunteered computers

1http://csgrid.org

were capable of training CNNs with 99.43% accuracy on the
test data in under 12,500 evaluated CNNs – results competitive
with some of the best human architected CNNs [21]. These
results are a significant of improvement over prior work [22],
[23], which required 60,000 evaluated CNNs to reach 98.32%
accuracy on the test data.

II. EVOLUTIONARY EXPLORATION OF AUGMENTING
CONVOLUTIONAL TOPOLOGIES

The EXACT algorithm starts with the observation that any
two feature maps of any size within a CNN can be connected
by a convolution of size convd = |outd − ind| + 1, where
outd and ind are the size of the output and input feature
maps, respectively, and convd is the size of the convolution
in dimension d. The consequence of this observation is that
the structure of a CNN can be evolved solely by determining
the sizes of the feature maps and how they are connected.
Instead of evolving the weights of individual neurons and how
they are connected, as done in the NEAT [9] algorithm, the
architecture of a CNN can be evolved in a similar fashion
except on the level of how feature maps are connected, with
additional operators to modify the feature map sizes. Whereas
NEAT works on the level of neurons and weights, EXACT
works on the level of feature maps (or nodes) and filters (or
edges).

Due to the computational expense of training CNNs, EX-
ACT has been designed with scalable distributed execution
in mind. It uses an asynchronous evolution strategy, which
has been shown by Desell et al. to allow scalability up to
potentially millions of compute hosts in a manner indepen-
dent of population size [24]. A master process manages a
population of CNN genomes (the feature map sizes and how
they are connected) along with their fitness (the minimized
error after backpropagation on that CNN). Worker processes
request CNN genomes to evaluate from the master, which
generates them either through applying mutation operations
to a randomly selected genome in the population (see Sec-
tion II-B) or by selecting two parents and performing crossover
to generate a child genome (see Section II-C). When that
worker completes training the CNN, it reports the CNN along
with its fitness back to the master, which will insert it into the
population and remove the least fit genome if it would improve
the population. This asynchronous approach has an additional
benefit in that the evolved CNNs have different training times,
and no worker need wait in the results of another to request
another CNN to evaluate, i.e., this approach automatically load
balances itself.

Given the strong advances made by in the machine learning
community for training deep CNNs and the sheer number of
weights in large CNNs, attempts to try and simultaneously
evolve the weights in the neural networks did not seem
feasible. Instead, EXACT allows for any CNN training method
to be plugged in to perform the fitness evaluation done by
the workers. In this way, EXACT can benefit from further
advances by the machine learning community and also make

for an interesting platform to evaluate different neural network
training algorithms.

A. Population Initialization

Generation of the initial population starts with first generat-
ing a minimal CNN genome, which consists solely of the input
node, which is the size of the training images (plus padding if
desired), and one output node per training class for a softmax
output layer, with one edge connecting the input node to each
output node. In this case of this work which uses the MNIST
handwritten digits dataset, this is a 28x28 input node, and 10
1x1 output nodes. This is sent as the CNN genome for the first
work request, and a copy of it is inserted into the population
with ∞ as fitness, denoting that it had not been evaluated yet.
Further work requests are fulfilled by taking a random member
of the population (which will be initially just the minimal
CNN genome), mutating it, inserting a copy of the mutation
into the population with∞ as fitness and sending that mutated
CNN genome to the worker to evaluate. Once the population
has reached a user specified population size through inserting
newly generated mutations and results received by workers,
work requests are fulfilled by either mutation or crossover,
depending on a user specified crossover rate (e.g., a 20%
crossover rate will result in 80% mutation).

B. Mutation Operations

When a CNN genome is selected for mutation, a user
specified number of the following mutations are performed.
In testing, this was found to be beneficial to allow for greater
variation in the CNNs generated. Each operator is selected
with a user specified rate. Currently, the CNNs evolved do not
utilize pooling layers, however modifying the size and type of
pooling done by the feature maps is an area of future work.

The operations performed are similar to the NEAT algo-
rithm, with the addition of operations to change the node size,
as well as a new add node operator. Additionally, whereas
NEAT only requires innovation numbers for new edges, EX-
ACT requires innovation numbers for both new nodes and new
edges. The master process keeps track of all node and edge
innovations made, which is required to perform the crossover
operation in linear time without a graph matching algorithm.

a) Disable Edge: This operation randomly selects an
enabled edge in a CNN genome and disables it so that it is not
used. The edge remains in the genome. As the disable edge
operation can potentailly make an output node unreachable,
after all mutation operations have been performed to generate
a child CNN genome, if any output node is unreachable that
CNN genome is discarded and a new child is generation by
another attempt at mutation.

b) Enable Edge: If there are any disabled edges in the
CNN genome, this operation selects a disabled edge at random
and enables it.

c) Split Edge: This operation selects an enabled edge at
random and disables it. It creates a new node (creating a new
node innovation) and two new edges (creating two new edge
innovations), and connects the input node of the split edge to

the new node, and the new node to the output node of the
split edge. The feature map size of the new node is set to
ix+ox
2.0 by iy+oy

2.0 , where id and od are the size of the input and
output feature maps, respectively, in dimension d (i.e., the size
of the new node is halfway between the size of the input and
output nodes). Further, the new node is given a depth value,
depthnew =

depthoutput+depthinput

2.0 , which is used by the add
edge operation and to linearly perform forward and backward
propagation without graph traversal.

d) Add Edge: This operation selects two nodes n1 and
n2 within the CNN Genome at random, such that depthn1

<
depthn2

and such that there is not already an edge between
those nodes in this CNN Genome, and then adds an edge from
n1 to n2. This ensures that all edges generated feed forward
(currently EXACT does not evolve recurrent CNNs). If an
edge between n1 and n2 exists within the master’s innovation
list, that edge innovation is used, otherwise this creates a new
edge innovation.

e) Change Node Size: This operation selects a node at
random from within the CNN Genome and randomly increases
or decreases its feature map size in both the x and y dimension.
For this work, the potential size modifications used were [-2,
-1, +1, +2].

f) Change Node Size X: This operation is the same as
change node size except that it only changes the feature map
size in the x dimension.

g) Change Node Size Y: This operation is the same as
change node size except that it only changes the feature map
size in the y dimension.

h) Add Node: This operation selects a random depth
between 0 and 1, noninclusive. Given that the input node is
always depth 0 and the output nodes are always depth 1, this
splits the CNN in two. A new node is created, at that depth,
and 1-5 edges are randomly generated to nodes with a lesser
depth, and 1-5 edges are randomly generated to nodes with
a greater depth. The node size is set to the average of the
maximum input node size and minimum output node size.

C. Crossover
Crossover utilizes two hyperparameters, the more fit parent

crossover rate and the less fit parent crossover rate. Two parent
CNN genomes are selected, and the child CNN genome is
generated from every edge that appears in both parents. Edges
that only appear in the more fit parent are added randomly
at the more fit parent crossover rate, and edges that only
appear in the less fit parent are added randomly at the less
fit parent crossover rate. Edges not added by either parent are
also carried over into the child CNN genome, however they
are set to disabled. Nodes are then added for each input and
output of an edge. If the more fit parent has a node with the
same innovation number, it is added from the more fit parent
(i.e., feature map sizes are inherited from the more fit parent
if possible), and from the less fit parent otherwise.

D. Epigenetic Weight Initialization
While EXACT is independent of the method used to train

CNNs, it does however present an interesting opportunity

for weight initialization. As after the initial population is
evaluated, child genomes are generated from one or two
trained parent CNNs. The EXACT implementation optionally
allows for weights of the parent CNN genomes to be carried
over into child genomes, as ”epigenetic” weight initialization
– as these weights are a modification of how the genome is
expressed as opposed to a modification of the genome itself.

III. SIMPLEX HYPERPARAMETER OPTIMIZATION

Determining the best hyperparameters (the parameters used
by backpropagation) is a challenging task, especially as the
heuristics for deep learning grow more complicated. The
parameters are interrelated and there can be a fairly large
number of them. For example, in this work there are 11
different hyperparameters that can be modified to effect the
training algorithm (see Section VI). How to best determine
these hyperparameters is still an open problem, and can be
very time consuming.

As the EXACT algorithm keeps a population of well
performing CNNs, each potentially with their own hyper-
parameters, this also allows for the co-evolution of those
hyperparameters. This work leverages a simple but effective
asynchronous strategy based on the Nelder-Mead simplex [25]
that has been shown by the author to be effective for global
optimization problems [26]. This simplex hyperparameter op-
timization (SHO) selects N (in this work, N = 5) distinct
individuals at random from the population. It uses the gradient
between the hyperparameters of the best selected genome and
the average of the hyperparameters of the others. Where r
is a random point along the line bounded between l1 and
l2 multiplied by the gradient (for this work l1 = 2.0 and
l2 = 0.5), each of the i new hyperparameters, hnew,i, is
calculated as a random point along the line between the
average, havg,i and best, hbest,i hyperparameters:

r = (rand(0, 1) ∗ l1)− l2 (1)

hnew,i = havg,i + r ∗ (hbest,i − havg,i) (2)

IV. EVOLVING NETWORKS FOR GENERALIZABILITY

In the previous work [22], [23], the fitness used to determine
if a CNN was inserted into the popualtion was based on
the training error, calculated as the cross entropy loss of
the softmax layer. However, this does not really reflect how
humans typically select hyperparameters and neural network
architectures – they try different settings and compare how
well the CNN performed on the testing data, modifying
hyperparameters and architectures to minimize the test error
and maximize the number of correct predictions on the test
data. Further, when batch normalization and dropout were
added to the backpropagation algorithm (see Section VI), it
was easy to reach over 99.9% on the training data, however
results on the test data were still relatively poor at 98.38%.
The real objective is to optimize the generalizability of the
CNNs, or how well they perform on the unseen test data.

However, there are some concerns with simply utilizing the
test error as a fitness value – EXACT and the SHO could

potentially “cherry pick” architectures and hyperparameters
which perform well on the test data set, but may not be
generalizable to other unseen data. This is especially a concern
when the epigenetic weight initialization strategy is used, as
this strategy preserves weights which perform well on the
test data. To address this concern, the MNIST test data was
split up into two separate data sets of 5,000. The first, called
the generalizability data was generated by selecting 500 of
each class at random from the test data. The error on the
generalizability data was used as the fitness to select CNNs,
and the remaining 5,000 images of test data were never seen
by either the backpropagation algorithm or EXACT for fitness
selection. In this way, it is possible to be sure that the evolved
CNNs are really generalizable to unseen data by testing how
performed on the separate test data.

V. EXACT ON VOLUNTEERED HOSTS

The EXACT source code has been made freely available as
an open source project on GitHub2. It has a multithreaded im-
plementation for small scale use, and an MPI implementation
for use on high performance computing clusters. However, to
provide enough computational resources to perform EXACT
on a large scale, it was also implemented as part of a BOINC
project. BOINC clients running on volunteered hosts serve as
worker processes, and server side daemons were developed
to validate results and handle the master EXACT process.
This required developing code to save the state of the EXACT
master process to a MySQL database such that these server
side daemons could be stopped and restarted without loss of
progress, which enabled checkpointing in the multithreaded
and MPI versions as well. Due to space limitations, the author
recommends [19], [27] for further details on the BOINC
architecture.

In able to be able to utilize BOINC as a platform for train-
ing evolved CNNs, a number of implementation challenges
needed to be addressed. First, BOINC requires applications
to be written in C++ so they can link against the required
BOINC libraries to be executed within by the BOINC clients
running on volunteered hosts. While there is some work in
enabling the use of Python applications in BOINC [28] or
applications within virtual machines [29], these efforts are still
under development. The requirement of C++, along with other
techical requirements described later in this section, precluded
the use of popular CNN training packages such as Caffe [30]
or Theano [31], [32].

Perhaps the most significant techincal challenge was that in
order to prevent users from reporting incorrect or malicious
results, each workunit needed to be sent to multiple hosts so
that the results can be validated against each other. Results
which do not match those from other hosts are flagged as
invalid and discarded. Only results that are valid award that
particular user credit, which can be used to generate currency
for Gridcoin whitelisted projects [33], or as motivation to
climb various leaderboards [34]. The applications that run on

2https://github.com/travisdesell/exact

the hosts must also be able to checkpoint and resume from
previously saved states, as users expect to not lose progress if
they need to temporarily turn off their BOINC client, or restart
or shut down their computers.

For many applications, checkpointing and validation can be
easily addressed, however in the case of training CNNs, even
slightly different values can accumulate leading to dramati-
cally different results. This means two hosts could be doing
valid work, but return results that are incomparable. This also
necessitates care being taken by checkpoints. If the CNN
weights and other training values aren’t saved and restored
with the exact same precision, these small differences can
result in significantly different final results.

A. Validation

The EXACT code was able to accomplish identical results
on a wide variety of BOINC computing hosts. In the current
EXACT codebase, Windows hosts from XP to Windows 10
on Intel86 and x86 64 architectures, along with Mac OS X
and Linux hosts on x86 64 architectures are all returning
practically identical results, allowing validation. As the Win-
dows applications were compiled with Visual Studio 2015, the
Linux applications were compiled with the Gnu C++ Compiler
(g++) and the Mac OS X applications were compiled with the
LLVM compiler, inconsistent implementations of the C and
C++ Standard Libraries needed to be addressed.

First, at the end of each epoch, the order of training images
needs to be shuffled. While the minstd rand0 random number
generator returned indentical results across platforms, the C++
shuffle function did not due to differing implementations of
the uniform distribution classes. Due to this, EXACT utilizes
a custom built Fisher Yates Shuffle function which produces
identical results across hosts. Second, on the different plat-
forms, the exp() function began to return slightly different
results for more extreme input values, resulting in widely
varying final results. EXACT uses a custom built exp() based
on a Taylor Series expansion, which while slower than the
C Standard Library implementations, returns identical results
across the different platforms. As the exp() function was only
used 10 times per image as part of the softmax layer, this did
not have any noticable effect on performance.

B. Checkpointing

Due to issues involved in robustly developing portable
binary files, checkpointing of the CNNs in EXACT is done
using a text file. However, similarly to the exp() function,
printing double precision variables to the checkpoint file with
arbitrary precision lead to some data loss and divergent results.
This issue was solved by the use of hexfloats, which allow full
precision I/O of floating point variables to and from text files.
The minstd rand0 was also used to ensure correct checkpoint-
ing, as other more advanced random number generators in the
C++ Standard Library, like mt19337 (Mersenne Twister) and
minstd rand utilized different serialization implementations
so it was not possible to utilize them to send a pre-seeded

random number generator as part of a BOINC workunit or
return result.

VI. BACKPROPAGATION IMPLEMENTATION

For this work, a fairly standard implementation of stochastic
backpropagation was used to train the CNNs, however there
were some notable modifications due to the fact that the CNNs
were evolved arbitrarily, as opposed to having well defined
layers as in most human architected CNNs. Backpropagation
was done using batch normalization [35] with varying batch
sizes and potentially dropout [36] (in some cases the input and
hidden dropout probabilities were set to 0).

a) Weight Initialization: Apart from the softmax output
layer, each node in the CNNs evolved by EXACT used a leaky
ReLU activation function with max value 5.5 and a leak of
0.1. Due to this fact, weights are initialized as recommended
by He et al. [37], where the variance, σ2, of the weights, w,
input to a neuron is σ2(w) =

√
2
n , where n is the number of

weights input to that neuron. After a CNN has been generated
by EXACT, when it is initialized a forward pass is made
through the graph, and each node calculates the total number
of weights input to it, and that value is then used to randomly
initialize those weights.

b) Forward Propagation: As specified in Section II-B,
each node in the evolved CNN contains a depth value. By
placing all edges into a vector sorted by the depth of their
input node, a forward pass through the CNN can be done by
propagating forward through each edge in that sorted order as
opposed to doing a graph traversal. Each node keeps track
of the number of input edges, and when that many have
propagated values forward into the node, it applies the ReLU
activation function to each of its neurons, unless it is an output
node.

c) Backward Propagation: Error values can be propa-
gated backwards by each edge in the reverse order of the
forward propagation. Weights were updated using Nesterov
momentum and L2 Regularization [38]:

vprev = v (3)
v = µ ∗ v − η ∗ dwi (4)

wi+ = −µ ∗ vprev + (1 + µ) ∗ v (5)
wi− = wi ∗ λ (6)

where vprev is the previous value for velocity v, µ is the
momentum hyperparameter, η is the learning rate, λ is the
L2 regularization weight decay hyperparameter, dwi is the
weight update calculated by error backpropagation for weight
wi. Velocities for Nesterov momentum are reset after every ω
training examples.

d) Hyperparameter Updates: At the end of each epoch,
the following updates are performed on the three hyperparam-
eters µ, η, and λ:

µ = µmax − ((µmax − µ) ∗∆µ); (7)
η = max(η ∗∆η, ηmin) (8)

λ = max(λ ∗∆λ, λmin) (9)

where ∆η < 1, ∆λ < 1, and ∆µ < 1. These operations decay
or increase the hyperparameters to the predefined µmax, ηmin

and λmin values. These values have been set to µmax = 0.99,
etamin = 0.00001, and λmin = 0.000001.

VII. RESULTS

A. Previous Results

In previous work [22], [23], over a period of two months,
approximately 4,500 volunteered computers on the Citizen
Science Grid trained over 120,000 CNNs using the EXACT
algorithm on two different searches. One used epigenetic
weight initialization and the other used randomized weight
resets. Table I shows the error and prediction rates for these
two searches. These were trained with the following hyper-
parameters: momentum µ = 0.5, ∆µ = 0.90, learning rate
η = 0.001, ∆η = 0.98, and weight decay λ = 0.00001,
∆λ = 0.98. Velocities for Nesterov momentum were not
reset. These were chosen in part because they provided the
most consistently good results on a LeNet based benchmark
network. The CNNs were initially allowed to train for 50
epochs, which was increased to 100 epochs and then finally
150 epochs as it became apparent that the CNNs could reach
lower training error with more epochs. The population size for
each EXACT search was set to 100.

There were some notable differences between these initial
results and the ones presented in this work. First, neither
dropout [36] nor batch normalization [35], nor a velocity
reset were implemented in the backpropagation algorithm
used. These updates to the training process alone raised the
training error on the LeNet based benchmark used to test
backpropagation from 96.79% to 98.38%, for an average of
10 runs with random initialization. As stated in Section IV,
the training error was used for CNN selection by EXACT, as
opposed to the generalizability error introduced in this work.
Further, the add node mutation operator had not yet been
utilized as part of the EXACT algorithm. Optimizations have
also made to the BOINC application since then, involving
linearizing and optimizing memory usage for node values
and edge weights, as well as converting from double to
single precision floating point operations which resulted in
an approximately 2-3x speedup and 4x reduction of memory
usage.

B. New Results

Due to the optimizations made since prior work, and an
increase to approximately 5,500 volunteered computers, new
results were gathered by running five searches simultaneously,
in two different batches, the first batch of five searches using
the simplex method for hyperparameter optimization, and
the second batch using fixed hyperparameters. All searches
utilized epigenetic weight initialization as this had shown
better results in the prior work. Each search was allowed to
run until 12,500 evolved CNNs were reported, and as batch
normalization provided significantly faster training, each CNN
was allowed to train for only 50 epochs. The population

Avg. Num. Training Error Testing Error Training Predictions Testing Predictions
Network Weights Best Avg Worst Best Avg Worst Best Avg Worst Best Avg Worst

Randomized 25,603.35 3,494.54 3,742.22 3,825.23 544.26 603.17 682.75 97.75% 97.33% 97.05% 97.89% 97.40% 96.98%
Epigenetic 23,862.65 3,644.30 3,909.88 3,991.73 594.13 657.48 710.25 98.42% 97.98% 97.48% 98.32% 97.87% 97.28%

TABLE I: Error and Prediction Rates for the top 20 CNNs in each EXACT search after 60,000 evaluated CNNs from prior
results.

Simplex 1 Simplex 2 Simplex 3 Simplex 4 Simplex 5 Fixed 1 Fixed 2 Fixed 3 Fixed 4 Fixed 5 Avg Simplex Avg Fixed

Best Training Error 225.203 256.195 236.661 280.256 180.473 502.339 497.575 633.442 510.248 643.029 235.758 557.327
Best Gen. Error 108.824 116.136 103.601 111.593 103.080 113.949 96.309 125.429 106.989 122.527 108.647 113.041
Best Testing Error 95.629 101.524 90.160 98.443 81.814 96.034 83.767 101.341 94.021 98.473 93.514 94.727
Best Gen+Test Error 204.946 221.009 200.885 218.204 189.446 215.459 188.443 232.969 203.355 223.398 206.898 212.725

Avg. Training Error 394.542 447.053 461.509 449.518 378.490 698.013 604.125 834.981 683.894 825.316 426.222 729.266
Avg. Gen. Error 130.772 127.178 118.568 129.946 120.114 130.180 114.463 139.940 130.228 137.914 125.316 130.545
Avg. Testing Error 129.006 117.089 107.458 122.990 105.798 118.832 105.585 123.968 114.299 126.818 116.468 117.900
Avg. Gen+Test Error 259.778 244.267 226.026 252.937 225.913 249.013 220.048 263.908 244.528 264.731 241.784 248.446

Worst Training Error 624.734 756.249 738.220 672.943 779.987 1,050.524 845.456 1,105.528 900.335 1,028.785 714.427 986.126
Worst Gen. Error 140.177 134.631 127.989 138.404 129.600 141.354 122.931 146.202 137.209 145.532 134.160 138.646
Worst Testing Error 154.564 139.170 131.315 154.928 144.082 146.091 132.534 150.923 147.623 147.290 144.812 144.892
Worst Gen+Test Error 292.775 267.813 257.145 288.679 271.466 284.485 248.345 293.409 282.729 290.398 275.576 279.873

TABLE II: Evolved Neural Network Error Rates

Simplex 1 Simplex 2 Simplex 3 Simplex 4 Simplex 5 Fixed 1 Fixed 2 Fixed 3 Fixed 4 Fixed 5 Avg Simplex Avg Fixed

Best Training Pred 99.978 99.968 99.975 99.972 99.982 99.877 99.903 99.845 99.903 99.838 99.975 99.873
Best Gen. Pred 99.340 99.360 99.360 99.380 99.360 99.400 99.420 99.260 99.320 99.320 99.360 99.344
Best Testing Pred 99.340 99.400 99.460 99.460 99.520 99.440 99.520 99.400 99.500 99.420 99.436 99.456
Best Gen+Test Pred 99.260 99.370 99.360 99.340 99.420 99.400 99.430 99.300 99.410 99.340 99.350 99.376

Avg. Training Pred 99.951 99.917 99.926 99.927 99.938 99.813 99.846 99.745 99.816 99.749 99.932 99.794
Avg. Gen. Pred 99.134 99.178 99.180 99.169 99.167 99.154 99.223 99.077 99.146 99.091 99.166 99.138
Avg. Testing Pred 99.146 99.252 99.286 99.201 99.308 99.229 99.308 99.215 99.270 99.207 99.239 99.246
Avg. Gen+Test Pred 99.140 99.215 99.233 99.185 99.237 99.191 99.266 99.146 99.208 99.149 99.202 99.192

Worst Training Pred 99.890 99.805 99.825 99.843 99.793 99.628 99.748 99.620 99.698 99.643 99.831 99.667
Worst Gen. Pred 98.960 98.980 99.000 98.960 98.980 98.920 98.980 98.840 98.940 98.860 98.976 98.908
Worst Testing Pred 98.960 98.980 99.080 99.040 99.080 98.980 99.000 98.920 99.040 98.920 99.028 98.972
Worst Gen+Test Pred 99.010 99.070 99.090 99.010 99.070 99.000 99.080 98.970 99.050 98.950 99.050 99.010

TABLE III: Evolved Neural Network Prediction Rates

size was also reduced to 50. Each batch of searches required
approximately 2 weeks. Tables II and III present the resulting
error and prediction rates, respectively, of the simplex and
fixed hyperparameter searches. Tables IV and V present the
resulting number of weights and edges, respectively, of the
CNNs in each search.

1) Initial Hyperparameters: The simplex hyperparameter
optimization started with the following hyperparameter ranges:
momentum µ = 0.4 to 0.6, ∆µ = 0.90 to 0.99, learning
rate η = 0.001 to 0.03, ∆η = 0.90 to 0.99, and weight
decay λ = 0.001 to 0.0001, ∆λ = 0.90 to 0.99, a velocity
reset ω = 500 to 3000, an input dropout probability of
0.0005 to 0.002, a hidden dropout probability of 0.05 to 0.15,
a batch size of 25 to 150, and a batch normalization alpha
α = 0.001 to 0.2. After allowing the hyperparemters to
initialize after 500 CNNs were reported, these constraints were
then relaxed to: momentum µ = 0.0 to 0.99, ∆µ = 0.0 to 1.0,
learning rate η = 0.00001 to 0.1, ∆η = 0.00000001 to 1.0,
and weight decay λ = 0.0 to 0.1, ∆λ = 0.00000001 to 1.0, a
velocity reset ω = 0 to 60, 000, an input dropout probability
of 0.0001 to 0.5, a hidden dropout probability of 0.0 to 0.9,
a batch size of 25 to 300, and a batch normalization alpha
α = 0.0001 to 0.5.

The fixed parameter searches were trained with the fol-
lowing hyperparameters: momentum µ = 0.5, ∆µ = 0.95,
learning rate η = 0.0025, ∆η = 0.95, and weight decay
λ = 0.0005, ∆λ = 0.95, a velocity reset ω = 1000, an input
dropout probability of 0.0, a hidden dropout probability of 0.0,

a batch size of 50, and a batch normalization alpha α = 0.1.
These were used as they were close to the average of what the
simplex hyperparameter optimization had evolved to, and the
dropout probabilities were set to 0 due to the suggestion in
the batch normalization paper that it generally makes dropout
unnecessary on MNIST [35].

2) Prediction, Error and CNN Size: Over previous work,
both the ability for the EXACT search to evolve complex
architectures along with their predictive ability have been sig-
nificantly increased. In previous work, it took 60,000 evolved
CNNs to reach an average population sizes of 25,603 and
23,862 weights, while the new batches of searches reached
59,474 and 64,167 weights (as an average of the search popu-
lations) in only 12,500 evolved CNNs. The best predictions on
all 10,000 testing images increased from 98.32% and 97.89%
to 99.43% and 99.42%, making these competitive with some
of the best human architected CNNs [21].

In comparing the searches with SHO vs. the fixed hyperpa-
rameters, in general the training error on average was half as
much for the simplex vs. the fixed hyperparameters, however
only a slight improvement was seen on the generalizability,
testing, and combined error rates. This resulted in close to
identical prediction rates for both sets of searches (99.35% vs.
99.376% on average on the combined error rates). However,
there is one notable difference between the two hyperparmeter
methods. As whole, on average the simplex searches had
approximately 5,000 (7.3%) less weights and 11 (2.3%) less
edges. Further, for the best CNNs found, they had approxi-

Simplex 1 Simplex 2 Simplex 3 Simplex 4 Simplex 5 Fixed 1 Fixed 2 Fixed 3 Fixed 4 Fixed 5 Avg Simplex Avg Fixed

Average 53,398.468 65,713.055 61,095.377 54,203.910 62,964.051 73,687.986 75,504.441 53,093.571 66,739.344 51,812.990 59,474.972 64,167.666

Best Training Error 61399 70773 62868 59969 75893 94444 87261 58534 80025 56285 66,180.400 75,309.800
Best Gen Error 61495 74024 63301 61955 73339 79195 85114 64727 81779 57011 66,822.800 73,565.200
Best Test Error 63190 74838 66532 55876 77783 93754 74886 57874 83081 52500 67,643.800 72,419.000
Best Gen+Test Error 63190 74839 66532 56573 77783 93754 85114 57342 81779 52500 67,783.400 74,097.800

Worst Training Error 51216 53320 51829 49114 38213 47322 55871 37961 54050 48114 48,738.400 48,663.600
Worst Test Error 48217 53320 47560 45690 38361 47322 66655 46121 44928 44403 46,629.600 49,885.800
Worst Gen Error 56370 68703 54403 56944 72589 82512 64768 52248 70916 56109 61,801.800 65,310.600
Worst Gen+Test Error 40474 52747 47560 45690 38361 78812 56373 51062 44928 46628 44,966.400 55,560.600

TABLE IV: Evolved Neural Network Weight Counts

Simplex 1 Simplex 2 Simplex 3 Simplex 4 Simplex 5 Fixed 1 Fixed 2 Fixed 3 Fixed 4 Fixed 5 Avg Simplex Avg Fixed

Average 496.415 496.151 461.333 409.488 486.775 498.620 630.456 364.046 471.957 441.522 470.032 481.320

Best Training Error 616 536 485 477 631 667 770 426 578 486 549.000 585.400
Best Gen Error 600 578 484 488 593 559 738 490 625 500 548.600 582.400
Best Test Error 635 589 506 430 649 656 617 420 625 447 561.800 553.000
Best Gen+Test Error 635 589 506 439 649 656 738 403 625 447 563.600 573.800

Worst Training Error 467 368 369 354 265 284 410 242 326 405 364.600 333.400
Worst Gen Error 536 515 373 447 578 570 505 341 512 486 489.800 482.800
Worst Test Error 406 368 330 323 266 284 544 300 298 365 338.600 358.200
Worst Gen+Test Error 344 360 330 323 266 546 444 330 298 384 324.600 400.400

TABLE V: Evolved Neural Network Edge Counts

mately 9,000 (12%) less weights and 36 (6.2%) less edges,
meaning that the simplex hyperparameter optimziation was
able to train more efficient CNNs, finding well performing
CNNs more quickly.

These results are rather interesting, given the difference in
training error, however perhaps completely not expected due
to the fact that the fixed hyperparameters were based on the
best found hyperparameters of the simplex hyperparameter
optimization. Further, given the fact that weights were reused
by epigenetic weight initialization, the simplex hyperparameter
optimization had an opportunity to allow the CNNs to utilize
hyperparameters that were more refined to how far the weights
had already been trained. A possible reason for the similar
combined prediction rates may be that the evolved neural
networks are reaching the limit of the predictive ability of
the architecture due to the lack of pooling layers, and/or the
limits of the backpropagation heuristics utilized. This does
make some sense as while the simplex hyperparamters were
able to perform better on the training data, they were unable
to reach any better results on the combined generalizability
and test data.

3) Reproduction Operator Performance: Figure 1 shows
how many CNNs were inserted into the population over time
that were produced by crossover and the various mutation
operators. Each CNN tracks which operations it was generated
by (e.g., 1 add node, 1 edge disable, 1 split edge). When any
genome is reported, the total number of operations performed
for each type is incremented by these values, and if it was
inserted into the population, the total number of operations
inserted for each type is also incremented. This allows the
search to track how often a generated genome is inserted
into the population based on what reproduction operations
produced it. These results show that the new add node
operation provides significant improvement to the population
evolution, as CNNs generated by this operation are inserted
into the population significantly more often than the standard
operations based on those used by NEAT, especially in the case

of fixed hyperparameters. The difference is most likely due to
variation in the simplex generated hyperparameters leading to
more fluctuation in training effectiveness. These results also
open up an interesting question in that the neuroevolution
operations standardly used by NEAT may be quite inefficient.

4) Hyperparameter Co-Evolution: Figure 2 presents
statisics with regards to what hyperparameters were used to
train the CNNs that were present in the population. These
results show that the simplex hyperparameter optimization
method allowed the hyperparamters in use to evolve over
time and in some cases converge closely (e.g., the learning
rate). What is quite interesting however, is how many of the
hyperparameters showed a wide range of values for the best
individual in the population (the green lines). In many cases
these appear bimodal, alternating between high and low values
within the population. This may suggest that some sets of
hyperparameters are being well used to find new different
optima, while others are used to refine results within an
already found optima of weights. This may also be part of the
reason why the simplex searches had much better performance
reducing training error, as some hyperparameters allowed more
refinement of weights.

C. Evolved Genomes

Figure 3 show the best CNNs evolved by the simplex
and fixed hyperparameter searches. These networks are quite
interesting in that they are quite different from the highly
structured CNNs found seen in literature [1], [2], [6]–[8].
It is interesting that there appear to be some nodes which
have larger numbers of input and output edges, which may be
of higher significance than others. Additionally, it should be
noted that the edges directly from the input to the output were
preserved, and many edges skip forward past multiple other
nodes, features which bear some similarity to recent work in
ResNets [8], [39].

(a) Reproduction operator insert rates for the simplex hyperparameter search
with the best found CNN (simplex search 5).

(b) Reproduction operator insert rates for the fixed hyperparameter search
with the best found CNN (fixed search 2).

Fig. 1: The rate which CNNs were inserted into the population based on how they were generated.

Fig. 2: Population statistics for number of epochs and the hyperparameter values for the simplex hyperparameter optimization
method on the search which resulted in the best combined generalizability and test prediction rate (simplex search 5). The
population epochs figure shows statistics for which epoch the CNNs found the best performing weights.

input 0
28 x 28

output 0
1 x 1

output 1
1 x 1

output 2
1 x 1

output 3
1 x 1

output 4
1 x 1

output 5
1 x 1

output 6
1 x 1

output 7
1 x 1

output 8
1 x 1

output 9
1 x 1

input 260
24 x 25

input 3152
21 x 21

input 3927
21 x 21

input 1336
21 x 21

input 1695
14 x 14

input 26
14 x 14

input 4052
16 x 16

input 508
24 x 25

input 14
14 x 14

input 48
24 x 25

input 714
24 x 24

input 1016
17 x 17

input 262
12 x 12

input 72
24 x 24

input 969
24 x 25

input 3963
24 x 24

input 182
20 x 20

input 31
7 x 9

input 53
21 x 21

input 37
14 x 14

input 32
14 x 15

input 268
20 x 21

input 52
14 x 14

input 1788
11 x 12

input 991
14 x 14

input 27
14 x 14

input 13
20 x 22

input 38
21 x 21

input 59
20 x 21

input 1414
20 x 22

input 349
7 x 7

input 47
21 x 22

input 293
21 x 21

input 341
21 x 21

input 729
21 x 21

input 261
11 x 11

input 2415
17 x 17

input 63
21 x 21

input 893
14 x 14

input 11
15 x 17

input 2954
16 x 16

input 447
19 x 19

input 730
12 x 12

input 12
14 x 14

input 18
15 x 15

input 20
12 x 12

input 34
14 x 14

input 42
16 x 16

input 44
14 x 14

input 50
12 x 14

input 51
16 x 14

input 58
14 x 14

input 61
14 x 14

input 69
14 x 14

input 78
14 x 14

input 79
14 x 14

input 183
14 x 14

input 184
14 x 14

input 233
14 x 14

input 287
14 x 14

input 292
14 x 14

input 339
14 x 14

input 670
14 x 14

input 995
14 x 14

input 49
10 x 10

input 3367
10 x 10

input 232
4 x 4

input 55
7 x 7

input 22
7 x 7

input 110
7 x 7

input 446
4 x 4

input 40
5 x 5

input 43
6 x 6

input 402
7 x 7

input 36
7 x 8

input 19
6 x 6

input 356
6 x 6

input 28
7 x 7

input 8598
13 x 13

input 16
10 x 11

input 54
7 x 7

input 507
7 x 7

input 1885
10 x 11

input 263
12 x 12

input 39
10 x 10

input 403
5 x 5

input 41
7 x 7

input 1239
7 x 7

input 62
3 x 3

input 1240
4 x 4

input 1051
4 x 4

input 77
7 x 7

input 1015
7 x 7

input 3689
6 x 6

input 3962
8 x 8

input 3688
4 x 4

input 970
22 x 23

input 590
11 x 12

input 17
5 x 5

input 4853
5 x 5

input 1335
10 x 11

input 66
7 x 7

input 33
14 x 15

input 2759
13 x 14

input 269
16 x 17

input 2758
1 x 1

input 2416
2 x 2

input 401
15 x 16

input 56
3 x 3

input 21
7 x 7

input 996
12 x 12

input 340
7 x 7

input 669
7 x 7

input 111
7 x 7

input 57
5 x 5

input 60
3 x 3

input 1909
6 x 6

input 9674
11 x 11

input 538
12 x 12

input 450
2 x 2

input 1908
6 x 6

input 537
4 x 4

input 591
7 x 6

input 237
5 x 5

input 73
5 x 5

input 108
5 x 5

input 968
5 x 5

input 1492
5 x 5

input 589
3 x 3

input 1413
4 x 5

input 3928
12 x 12

input 24
6 x 6

input 892
8 x 8

input 2176
2 x 2

input 4053
11 x 12

input 15
6 x 6

input 1014
4 x 4

input 74
7 x 8

input 178
2 x 2

input 1118
7 x 7

input 731
7 x 7

input 354
5 x 7

input 668
7 x 7

input 65
9 x 10

input 2536
11 x 11

input 2955
7 x 7

input 109
7 x 7

input 177
3 x 3

input 2031
3 x 3

input 275
4 x 4

input 2175
3 x 3

input 2757
2 x 2

input 8599
5 x 5

input 25
4 x 4

input 2395
1 x 2

input 3690
1 x 2

(a) The 11597th genome inserted into fixed search 2. This network had 630 edges and 76065 weights, and a combined generalizability and testing rate of
99.43%.

input 0
28 x 28

output 0
1 x 1

output 1
1 x 1

output 2
1 x 1

output 3
1 x 1

output 4
1 x 1

output 5
1 x 1

output 6
1 x 1

output 7
1 x 1

output 8
1 x 1

output 9
1 x 1

input 15
15 x 15

input 82
21 x 21

input 1720
21 x 21

input 1836
17 x 17

input 1837
18 x 18

input 7228
24 x 25

input 16
13 x 14

input 80
14 x 14

input 84
17 x 17

input 807
21 x 22

input 337
14 x 14

input 1462
19 x 19

input 1872
24 x 24

input 1766
7 x 7

input 4708
14 x 14

input 475
18 x 17

input 1684
24 x 24

input 2476
20 x 21

input 67
17 x 17

input 39
7 x 7

input 353
22 x 22

input 2216
21 x 21

input 4190
17 x 17

input 1329
21 x 21

input 2475
20 x 21

input 1812
21 x 21

input 1623
21 x 21

input 320
10 x 10

input 25
20 x 20

input 38
21 x 21

input 6887
18 x 18

input 162
14 x 14

input 88
21 x 21

input 1303
10 x 9

input 163
7 x 7

input 352
21 x 21

input 3465
17 x 17

input 1888
10 x 10

input 9159
19 x 19

input 46
16 x 16

input 12
14 x 14

input 64
7 x 7

input 3150
12 x 12

input 1814
11 x 10

input 85
10 x 10

input 87
13 x 14

input 1685
15 x 15

input 994
20 x 20

input 547
17 x 16

input 11
14 x 14

input 23
14 x 14

input 26
12 x 13

input 29
14 x 16

input 30
14 x 14

input 34
14 x 14

input 43
13 x 13

input 44
14 x 14

input 48
14 x 14

input 49
14 x 14

input 57
14 x 14

input 63
14 x 14

input 65
14 x 14

input 66
14 x 14

input 176
14 x 14

input 249
14 x 14

input 662
14 x 14

input 797
14 x 14

input 992
14 x 14

input 1375
14 x 14

input 3161
8 x 8

input 92
5 x 5

input 1813
5 x 5

input 1461
8 x 8

input 22
11 x 12

input 685
8 x 9

input 262
8 x 9

input 58
5 x 5

input 3439
9 x 10

input 47
11 x 11

input 27
10 x 11

input 1721
3 x 1

input 976
10 x 10

input 14
7 x 7

input 977
4 x 4

input 1373
5 x 5

input 20
6 x 7

input 32
7 x 7

input 13
7 x 7

input 6888
15 x 16

input 7153
11 x 11

input 2321
4 x 4

input 1838
7 x 8

input 1873
10 x 10

input 1374
8 x 8

input 248
7 x 7

input 319
5 x 6

input 83
4 x 4

input 51
10 x 10

input 663
6 x 6

input 8241
10 x 10

input 3979
11 x 12

input 28
6 x 4

input 81
8 x 7

input 6698
16 x 17

input 9158
18 x 19

input 2217
16 x 17

input 89
10 x 11

input 3162
8 x 9

input 68
15 x 16

input 42
7 x 7

input 267
10 x 10

input 1733
8 x 8

input 1830
7 x 7

input 2123
5 x 5

input 3980
6 x 6

input 3151
7 x 7

input 4075
12 x 13

input 3085
4 x 3

input 2322
11 x 11

input 1328
10 x 10

input 5047
10 x 10

input 1304
8 x 7

input 1291
10 x 10

input 3084
10 x 10

input 4709
6 x 6

input 9794
11 x 11

input 2886
3 x 3

input 8256
5 x 5

input 3760
13 x 13

input 1327
10 x 10

input 796
10 x 10

input 177
7 x 7

input 269
8 x 8

input 1767
8 x 8

input 2401
7 x 7

input 5640
7 x 7

input 19
7 x 6

input 1624
4 x 4

input 4076
4 x 4

input 2569
11 x 12

input 21
10 x 10

input 4218
4 x 4

input 471
6 x 6

input 4217
12 x 12

input 1126
9 x 8

input 33
7 x 7

input 50
6 x 6

input 9157
7 x 7

input 56
9 x 10

input 5641
7 x 7

input 684
4 x 4

input 3761
3 x 3

input 993
5 x 6

input 3464
6 x 5

input 3466
4 x 4

input 1292
4 x 4

input 2323
4 x 4

input 6699
4 x 4

input 31
4 x 4

input 6700
4 x 4

(b) The 12455th genome inserted into simplex search 5. This network had 610 edges and 73760 weights, and a combined generalizability and testing rate
of 99.42%.

Fig. 3: The best performing CNNs evolved by the simplex and fixed hyperparameter searches. Disabled edges and unused
nodes are not shown. The green square node at the top is the input node, and the 10 blue square nodes at the bottom represent
each of the 10 outputs (for the numbers 0 – 9 in the MNIST dataset).

VIII. DISCUSSION AND FUTURE WORK

This work presents significant advancements to the per-
formance of the EXACT algorithm: the addition of an add
node mutation operator, simplex hyperparameter optimiza-
tion (SHO), and improved backpropagation heuristics through
dropout and batch normalization. This enabled the algorithm
to evolve CNNs with 99.43% test accuracy in under 12,500
evalauted CNNs at 50 epochs per CNN, a dramatic improve-
ment over the previous implementation which required 60,000
evaluated CNNs to reach only 98.38% test accuracy with 150
epochs per CNN. Further, SHO alleviates the challenge of
determining backpropagation hyperparameters, while at the
same time evolving smaller CNNs with similar predictive
ability.

This work opens the door for significant future work. In
particular, the EXACT algorithm does not yet evolve pooling
layers, due to the fact that a max pooling layer of size 2

reduces the size of a feature map by a factor of two – which
can in many cases result in the feature map being connected
to large output feature maps. However, a potential way for this
issue to be resolved is by utilizing fractional max pooling [40],
which allows for fractional sized max pooling layers which can
more easily be integrated into EXACT’s arbirarily generated
CNNs and allow even greater predictive ability.

Using EXACT to evolve CNNs for other data sets such as
the CIFAR and TinyImage datasets [41], [42] is of high interest
as well. SHO and the volunteer computing implementation
provide significant means for the analysis of the effect of CNN
architecture and hyperparameters on their generalizability, as
thousands of CNNs are trained with varying hyperparameters
and stored in a database. This gives an opportunity to utilize
data mining strategies to obtain new insights on how CNNs
function.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–
1105. [Online]. Available: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[3] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, pp. 1725–1732.

[4] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[5] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[9] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[10] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based en-
coding for evolving large-scale neural networks,” Artificial life, vol. 15,
no. 2, pp. 185–212, 2009.

[11] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Accelerated neural
evolution through cooperatively coevolved synapses,” Journal of Ma-
chine Learning Research, vol. 9, no. May, pp. 937–965, 2008.

[12] T. Desell, S. Clachar, J. Higgins, and B. Wild, “Evolving deep recurrent
neural networks using ant colony optimization,” in Evolutionary
Computation in Combinatorial Optimization, ser. Lecture Notes in
Computer Science, G. Ochoa and F. Chicano, Eds. Springer
International Publishing, 2015, vol. 9026, pp. 86–98. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-16468-7 8

[13] K. Salama and A. M. Abdelbar, “A novel ant colony algorithm for
building neural network topologies,” in Swarm Intelligence. Springer,
2014, pp. 1–12.

[14] J. Koutnı́k, J. Schmidhuber, and F. Gomez, “Evolving deep unsupervised
convolutional networks for vision-based reinforcement learning,” in Pro-
ceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation. ACM, 2014, pp. 541–548.

[15] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[16] L. Xie and A. Yuille, “Genetic cnn,” arXiv preprint arXiv:1703.01513,
2017.

[17] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving
deep neural networks,” arXiv preprint arXiv:1703.00548, 2017.

[18] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, Q. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” arXiv preprint
arXiv:1703.01041, 2017.

[19] D. P. Anderson, E. Korpela, and R. Walton, “High-performance task
distribution for volunteer computing.” in e-Science. IEEE Computer
Society, 2005, pp. 196–203.

[20] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits,” 1998.

[21] R. Benenson, “Who is the best at mnist?” [Accessed
Online 2017] http://rodrigob.github.io/are we there yet/
build/classification datasets results.html.

[22] T. Desell, “Large scale evolution of convolutional neural networks using
volunteer computing,” in The Genetic and Evolutionary Computation
Conference (GECCO), July 2017, pp. 2–pp, to Appear.

[23] ——, “Large scale evolution of convolutional neural networks using
volunteer computing,” CoRR, vol. abs/1703.05422, pp. 17–pp, 2017.
[Online]. Available: http://arxiv.org/abs/1703.05422

[24] T. Desell, D. Anderson, M. Magdon-Ismail, B. S. Heidi Newberg,
and C. Varela, “An analysis of massively distributed evolutionary algo-
rithms,” in The 2010 IEEE congress on evolutionary computation (IEEE
CEC 2010), Barcelona, Spain, July 2010.

[25] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” The computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[26] T. Desell, C. Varela, and B. Szymanski, “An asynchronous hybrid
genetic-simplex search for modeling the Milky Way galaxy using volun-
teer computing,” in Genetic and Evolutionary Computation Conference
(GECCO), Atlanta, Georgia, July 2008.

[27] D. P. Anderson, “Volunteer computing: the ultimate cloud,” Crossroads,
vol. 16, no. 3, pp. 7–10, 2010.

[28] E. M. Heien, Y. Takata, K. Hagihara, and A. Kornafeld, “Pymw-a python
module for desktop grid and volunteer computing,” in Parallel & Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International Symposium
on. IEEE, 2009, pp. 1–7.

[29] J. Rantala, “VMWrapper,” 2017, http://boinc.berkeley.edu/trac/wiki/VmApps.
[30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the ACM International
Conference on Multimedia. ACM, 2014, pp. 675–678.

[31] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. De-
lalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron
et al., “Theano: Deep learning on gpus with python,” in NIPS 2011,
BigLearning Workshop, Granada, Spain, vol. 3. Citeseer, 2011.

[32] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Berg-
eron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new
features and speed improvements,” arXiv preprint arXiv:1211.5590,
2012.

[33] Gridcoin, “What is gridcoin?” 2017, http://www.gridcoin.us/.
[34] BoincStats, “BOINC stats,” 2017, http://boincstats.com/.
[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[36] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[38] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances
in optimizing recurrent networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 8624–8628.

[39] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, 2017, pp. 4278–4284.

[40] B. Graham, “Fractional max-pooling,” arXiv preprint arXiv:1412.6071,
2014.

[41] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Computer Science Department, University of Toronto,
Tech. Rep, 2009.

[42] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 30,

no. 11, pp. 1958–1970, 2008.

