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ABSTRACT
�is work presents a new algorithm called evolutionary explo-
ration of augmenting convolutional topologies (EXACT), which is
capable of evolving the structure of convolutional neural networks
(CNNs). EXACT is in part modeled a�er the neuroevolution of aug-
menting topologies (NEAT) algorithm, with notable exceptions to
allow it to scale to large scale distributed computing environments
and evolve networks with convolutional �lters. In addition to mul-
tithreaded and MPI versions, EXACT has been implemented as
part of a BOINC volunteer computing project, allowing large scale
evolution. During a period of two months, over 4,500 volunteered
computers on the Citizen Science Grid trained over 120,000 CNNs
and evolved networks reaching 98.32% test data accuracy on the
MNIST handwri�en digits dataset. �ese results are even stronger
as the backpropagation strategy used to train the CNNs was fairly
rudimentary (ReLU units, L2 regularization and Nesterov momen-
tum) and these were initial test runs done without re�nement of the
backpropagation hyperparameters. Further, the EXACT evolution-
ary strategy is independent of the method used to train the CNNs,
so they could be further improved by advanced techniques like elas-
tic distortions, pretraining and dropout. �e evolved networks are
also quite interesting, showing ”organic” structures and signi�cant
di�erences from standard human designed architectures.
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1 EXACT
�e EXACT algorithm starts with the observation that any two
�lters of any size within a CNN can be connected by a convolu-
tion of size convd = |outd − ind | + 1, where outd and ind are the
size of the output and input �lters, respectively, and convd is the
size of the convolution in dimension d . �e consequence of this
observation is that the structure of a CNN can be evolved solely
by determining the sizes of the �lters and how they are connected.
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Instead of evolving the weights of individual neurons and how they
are connected, as done in the NEAT [9] algorithm, the architecture
of a CNN can be evolved in a similar fashion except on the level of
how �lters are connected, with additional operators to modify the
�lter sizes.

Generation of the initial population starts with �rst generating
a minimal CNN genome, which consists solely of the input node,
which is the size of the training images (plus padding if desired),
and one output node per training class for a so�max output layer.
In this case of this work which uses the MNIST handwri�en digits
dataset, this is a 28x28 input node, and 10 output nodes. �is
is sent as the CNN genome for the �rst work request, and also
inserted into the population with ∞ as �tness, denoting that it
had not been evaluated yet. Further work requests are ful�lled
by taking a random member of the population (which will be
initially just the minimal CNN genome), mutating it, inserting
the mutation into the population with ∞ as �tness and sending
that CNN genome to the worker to evaluate. Once the population
has reached a user speci�ed population size through inserting
newly generated mutations and results received by workers, work
requests are ful�lled by either mutation or crossover, depending
on a user speci�ed crossover rate (e.g., a 20% crossover rate will
result in 80% mutation). Mutation operations include adding adges,
enabling edges, disabling edges, spli�ing edges, and change node
sizes.

2 EVOLVED NEURAL NETWORKS
Two simultaneous EXACT searches were performed, one using a
epigenetic weight initialization where weights were reused from a
previously trained parent, and the other using randomized weight
initialization. Table 2 shows the error and prediction rates for the
top 20 CNNs in these searches a�er 60,000 evaluated CNNs each.
Table 1 shows the error and prediction rates for benchmark CNNs
trained with the same hyperparameters. Figure 1 shows an example
evolved CNN which had the highest test accuracy. �ese evolved
networks are quite interesting in that they are highly di�erent from
the highly structured CNNs found seen in literature [5, 4, 8, 10, 1].
Even so, compared to hand designed benchmark networks, they still
were able to �nd CNNs that trained to signi�cantly lower training
and test error, while making strong improvements in training and
testing accuracy. �e networks also show vestigial �lters and edges,
resulting from the crossover and edge disable mutation operator.

3 DISCUSSION AND FUTUREWORK
A novel algorithm for the evolution of arbitrarily structured CNNs
called evolutionary exploration of augmenting convolutional topoli-
gies (EXACT) has been presented, which to the author’s knowlege
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Figure 1: Genome 59455 had the best training accuracy for the epigenetic weight search. �is network had a training error
of 3,830.97, test error of 633.95, training accuracy of 98.42% and test accuracy of 98.32%.

Number Training Error Testing Error
Network Weights Best Avg Worst Best Avg Worst

One Layer 7840 16222.59 16637.26 17457.19 2643.16 2686.82 2792.68
Two Layer 8260 7041.03 8063.04 9084.34 1186.11 1331.50 1499.41
Modi�ed LeNet 12285 7994.90 8556.57 9484.93 1325.92 1408.41 1585.14

Number Training Predictions Testing Predictions
Network Weights Best Avg Worst Best Avg Worst

One Layer 7840 92.02% 91.04% 80.67% 91.97% 91.10% 90.09%
Two Layer 8260 96.66% 96.66% 94.77% 96.66% 95.90% 94.63%
Modi�ed LeNet 12285 97.27% 96.83% 96.09% 97.19% 96.79% 95.90%

Table 1: Benchmark Neural Network Error and Prediction
Rates

Avg. Num. Training Error Testing Error
Network Weights Best Avg Worst Best Avg Worst

Randomized 25,603.35 3,494.54 3,742.22 3,825.23 544.26 603.17 682.75
Epigenetic 23862.65 3,644.30 3,909.88 3,991.73 594.13 657.48 710.25

Avg. Num. Training Predictions Testing Predictions
Network Weights Best Avg Worst Best Avg Worst

Randomized 25,603.35 97.75% 97.33% 97.05% 97.89% 97.40% 96.98%
Epigenetic 23862.65 98.42% 97.98% 97.48% 98.32% 97.87% 97.28%

Table 2: Error and Prediction Rates for the top 20 CNNs in
each EXACT search.

is the �rst capable of performing this task. In order to overcome
the computational demands of evolving large numbers of CNNs, it
was implemented as part of the Citizen Science Grid, a BOINC vol-
unteer computing project. Over 4,500 volunteered compute hosts
were used to train over 120,000 evolved CNNs during a period of
2 months, which resulted in CNNs reaching 98.32% test accuracy
on the MNIST handwri�en digits data set, and showing signi�-
cantly improved training and testing error over human designed
benchmark nerual networks. �e evolved neural networks show
signi�cant di�erences from the highly structued human designed
CNNs found in the literature, containing interesting structures
which bear some similarities to biological neurons. �e author
hopes that these may provide some new insights to the machine
learning community in the development of new CNN architectures.

�is work opens the door for signi�cant future work. In par-
ticular, the EXACT algorithm does not yet evolve pooling layers.
�is can be done by having each �lter perform a pooling operation
of an arbrarity size, which can be mutated by additional mutation
operations. �e algorithm also currently only supports 2 dimen-
sional input and �lters, and will need to be updated to utilize 3
dimensional inputs and �lters so that it can evolve CNNs for color
data sets such as the CIFAR and TinyImage datasets [3, 11].

�e use of epigenetic weight initialization, where child CNNs
reuse trained weights from their parents has shown potential for
improving the CNNs evolved by EXACT, however it did not seem

to reduce the number of epochs required by backpropagation to
�nd a minimal training error. �is may be because di�erent CNN
training hyperparameters may provide more e�ective for these
CNNs. It may also be possible to evolve the hyperparameters used
to train the CNNs along with their structure for improved results
as done by other recent work [6, 7]. Pretraining the CNNs using
restricted boltzmann machines [2] has the potential to even further
improve accuracy of the trained CNNs, and may be potentially
combined with epigenetic pretraining. Lastly, EXACT evolves and
trains a large number of CNNs in each search, which provides
an opportunity to determine how robust various CNN training
techniques are and to see if these methods have any e�ect on the
structure of the CNNs involved.
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