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ABSTRACT
This paper examines three generic strategies for improving the per-
formance of neuro-evolving convolutional neural networks (CNNs):
node-level mutation operations, epigenetic weight initialization and
pooling connections. These were implemented using the Evolution-
ary eXploration of Augmenting Convolutional Topologies (EXACT)
algorithm. Results were gathered over the period of a month using
a volunteer computing project, where over 225,000 CNNs were
trained and evaluated across 16 different EXACT searches. The
node mutation operations where shown to dramatically improve
evolution rates over traditional edge mutation operations (as used
by the NEAT algorithm), and epigenetic weight initialization was
shown to further increase the accuracy and generalizability of the
trained CNNs. As a negative but interesting result, allowing for
pooling connections was shown to degrade the evolution progress.
The best trained CNNs reached 99.46% accuracy on the MNIST test
data in under 13,500 CNN evaluations – accuracy comparable with
some of the best human designed CNNs.
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1 INTRODUCTION
By investigating strategies for accelerating the neuro-evolution
process, this work provides advances towards answering a big open
challenge in machine learning: What is the optimal architecture for
a convolutional neural network? In particular, this work investigates:
i) node-level mutation operatorswhich allow for faster growth of the
evolved CNNs; ii) epigenetic weight initialization where child CNNs
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retainweights from their already trained parent(s); and iii) fractional
max pooling [2], which allows for the use of pooling connections
between arbitrary sized input and output feature maps.

In "epigenetic" weight initialization, the initial weights of a child
genome are inherited from their parent genomes, instead of using
randomly initialized parameters. Graham’s fractional max pool-
ing [2] was utilized to allow pooling operations between arbitrarily
sized feature maps – edges could be either convolutional or pooling.
Lastly, five newmutation operators were investigated, in addition to
the original NEAT-like operations initially implemented in EXACT.
These were i) enable/disable node, which enable/disable a node
along with its incoming and outgoing edges; ii) add node, which di-
vides the graph by depth and randomly selects input/output nodes
for a new node at the depth of the partition; iii) split node which
disables a node and creates two new ones, which randomly create
edges to the inputs/outputs of the split node; and iv) merge node
which disables two nodes and creates a new one with edges to
all the inputs/outputs of the merged nodes. Due to space limita-
tions the reader is referred to Desell [1] for further implementation
details.

2 RESULTS
Four different types of EXACT searches were run for a period of a
month on the Citizen Science Grid1 volunteer computing project:
i) node and edge operations, without pooling; ii) node and edge
operations, with pooling; iii) only edge operations, without pool-
ing; iv) only edge operations, with pooling. All 16 searches were
run simultaneously to minimize external influences such as the
availability of volunteered hosts and network outages. Each search
evaluated between 13,000 and 14,500 different trained CNNs. Ta-
ble 1 presents the best, average, and worst validation and testing
error and prediction rates for each of these searches.

Effects of Node Mutations and Pooling. The searches with node
mutations and no pooling performed the best, with significant im-
provements over those without node mutations and with pooling.
In terms of error and prediction rates, the searches with node mu-
tations and pooling performed comparably to the searches without
pooling and without node mutations. The searches with pooling
and without node operations performed the worst.

Epigenetic Weight Initialization. Table 3 provides statistics for
the validation and testing error and predictions of the best evolved
CNNs from each of the four search types. Each of these CNNs
were retrained with weights initialized by the standard strategy
recommended by He et al. [3]. Table 2 shows the min, average and
maximum of these values, having retrained each of the best CNNs
five times.
1https://csgrid.org
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Validation Error Testing Error Validation Predictions Testing Predictions
Search Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg Best
Node+Edge 1 259.49 234.71 224.37 245.48 220.99 188.62 99.20% 99.28% 99.36% 99.14% 99.26% 99.46%
Node+Edge 2 300.00 276.16 258.75 296.74 267.02 243.16 99.07% 99.17% 99.27% 99.03% 99.14% 99.30%
Node+Edge 3 262.86 240.13 232.08 249.33 222.21 189.20 99.20% 99.27% 99.37% 99.13% 99.25% 99.39%
Node+Edge 4 281.66 256.58 247.89 273.01 235.60 210.81 99.08% 99.19% 99.28% 99.04% 99.21% 99.36%
Node+Edge, Pooling 1 346.27 320.52 302.79 359.28 326.21 274.14 98.89% 99.02% 99.12% 98.82% 99.00% 99.20%
Node+Edge, Pooling 2 335.53 296.80 283.96 350.83 299.32 271.21 98.95% 99.07% 99.18% 98.82% 99.03% 99.25%
Node+Edge, Pooling 3 349.16 335.53 316.00 441.07 358.78 312.25 98.83% 98.96% 99.11% 98.74% 98.92% 99.15%
Node+Edge, Pooling 4 357.96 333.84 323.10 372.10 320.63 284.59 98.85% 98.96% 99.12% 98.79% 98.96% 99.17%
Edge 1 324.57 294.86 278.76 329.86 294.91 254.20 99.01% 99.09% 99.18% 98.86% 99.03% 99.18%
Edge 2 321.82 308.53 298.78 363.19 319.48 280.03 98.97% 99.07% 99.17% 98.79% 98.98% 99.18%
Edge 3 292.04 286.42 271.55 339.46 282.48 225.64 99.07% 99.13% 99.22% 98.95% 99.07% 99.26%
Edge 4 327.44 293.25 277.72 327.98 292.53 254.06 98.97% 99.09% 99.22% 98.89% 99.03% 99.19%
Edge, Pooling 1 390.09 368.79 350.83 417.36 376.38 331.14 98.76% 98.87% 99.02% 98.65% 98.79% 99.07%
Edge, Pooling 2 378.39 359.22 338.24 449.45 394.67 329.94 98.79% 98.86% 98.95% 98.49% 98.72% 98.98%
Edge, Pooling 3 389.28 354.73 327.78 421.46 359.62 314.51 98.79% 98.92% 99.02% 98.67% 98.82% 98.99%
Edge, Pooling 4 392.37 382.92 342.80 478.48 383.83 310.83 98.67% 98.79% 98.95% 98.56% 98.79% 99.08%

Table 1: EXACT Search Error and Prediction Rates

Validation Error Testing Error Validation Predictions Testing Predictions
Search Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg Best
Node+Edge 313.83 291.71 268.00 260.92 240.57 223.70 99.09% 99.17% 99.26% 99.19% 99.26% 99.30%
Node+Edge, Pooling 469.48 392.53 357.46 344.27 321.45 300.77 98.92% 98.97% 99.00% 98.93% 98.99% 99.06%
Edge 380.41 355.73 331.26 317.61 298.38 290.50 98.91% 98.99% 99.08% 98.85% 99.03% 99.15%
Edge, Pooling 569.96 539.27 470.25 571.04 501.45 444.72 98.43% 98.51% 98.64% 98.20% 98.46% 98.64%

Table 2: Retraining Error and Prediction Rates

Search Weights Val. Test Val. Test
Type Err. Err. Pred. Pred.
Node+Edge 93813 259.49 188.62 99.20% 99.46%
Node+Edge, Pooling 50387 335.53 271.21 98.99% 99.25%
Edge 50285 292.04 225.64 99.12% 99.26%
Edge, Pooling 30792 342.80 310.83 98.95% 99.08%

Table 3: Best Evolved Neural Networks

3 DISCUSSION AND FUTUREWORK
Epigenetic weight initialization was shown to provide a significant
improvement to test error rates, which were reduced by 0.11% to
0.44%, and on average by 0.20% to 0.62% when compared to weights
initialized by the standard randomized method. Node mutations
reduced test error by 0.21% for the best found genomes and on
average 0.175% for the searcheswithout pooling and by 0.18% for the
best found genomes and by 0.1575% for the searches with pooling.
These results are significant as error rates were already below 1%.

Allowing edges to be either convolutional or fractional max pool-
ing edges, was shown to degrade performance. Overall, it seems
that the additional complexity of the search space caused by al-
lowing for pooling edges did not overcome any benefit provided
by allowing pooling. Further this does reflect on the sentiment of
some members of the machine learning community, e.g. Geoffery
Hinton describing the pooling operation as a “big mistake” [4] and
other work showing well performing CNNs which do not require
pooling [5].

Current work is focusing on reproducing the same results on
other data sets such as the CIFAR and TinyImage datasets. Ad-
ditionally, as EXACT can track insertion rates from the various
recombination operators, additional benefits may be gained by
online adaptation of how frequently the operations are used. For
example, it may improve performance to initial focus on operations
which grow the CNN size (adding and splitting nodes and edges)
and then later focus on operations which refine the CNN (disabling
nodes and edges).
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