
Ant-based Neural Topology Search (ANTS) for
Optimizing Recurrent Networks

AbdElRahman ElSaid and Alexander G. Ororbia** and Travis J. Desell**

Rochester Institute of Technology, Rochester, NY 14623, USA
aae8800@rit.edu, ago@cs.rit.edu, tjdvse@rit.edu

Abstract. Hand-crafting effective and efficient structures for recurrent
neural networks (RNNs) is a difficult, expensive, and time-consuming
process. To address this challenge, we propose a novel neuro-evolution
algorithm based on ant colony optimization (ACO), called Ant-based
Neural Topology Search (ANTS), for directly optimizing RNN topolo-
gies. The procedure selects from multiple modern recurrent cell types
such as ∆-RNN, GRU, LSTM, MGU and UGRNN cells, as well as re-
current connections which may span multiple layers and/or steps of time.
In order to introduce an inductive bias that encourages the formation of
sparser synaptic connectivity patterns, we investigate several variations
of the core algorithm. We do so primarily by formulating different func-
tions that drive the underlying pheromone simulation process (which
mimic L1 and L2 regularization in standard machine learning) as well as
by introducing ant agents with specialized roles (inspired by how real ant
colonies operate), i.e., explorer ants that construct the initial feed for-
ward structure and social ants which select nodes from the feed forward
connections to subsequently craft recurrent memory structures. We also
incorporate communal intelligence, where best weights are shared by the
ant colony for weight initialization, reducing the number of backprop-
agation epochs required to locally train candidate RNNs, speeding up
the neuro-evolution process. Our results demonstrate that the sparser
RNNs evolved by ANTS significantly outperform traditional one and
two layer architectures consisting of modern memory cells, as well as the
well-known NEAT algorithm. Furthermore, we improve upon prior state-
of-the-art results on the time series dataset utilized in our experiments.

Keywords: Ant Colony Optimization · Swarm Intelligence · Neuro-
Evolution · Recurrent Neural Networks · Time Series Data Prediction.

1 Introduction

Given their success across a wide swath of pattern recognition tasks, artificial
neural networks (ANNs) have become a popular tool to use when attempting to

∗∗Indicates equal advising.



solve data-driven problems. However, in order to solve increasingly more com-
plicated problems, neural architectures are becoming vastly more complex. In-
creasing the complexity of an ANN entails having to operate with more layers of
neural processing elements required, most of which are usually wider and more
densely-connected, greatly complicating the model design process. The resulting
increase in complexity introduces new challenges and complications when fit-
ting these ANN models to actual data. These problems are further compounded
when ANNs are meant to process temporal data, entailing recurrent connections
which can span varying periods of time. As a result, crafting performant ANNs
becomes expensive and incredibly difficult for engineers, highlighting a grand
challenge facing the domain of machine learning – the automation of ANN ar-
chitecture design, which includes selecting the form of the underlying synaptic
topology as well as the values of the weights themselves. The key to this automa-
tion might lie in developing optimization procedures that can effectively explore
the vast, combinatorial search space of possible topological structures that could
be constructed from a large set of neuronal units and the wide variety of synaptic
connectivity patterns that relate them to one another.

Recent interest in automated architecture search has resulted in many pro-
posed ideas related to deep feed forward and convolutional networks, including
those based on nature-inspired metaheuristics [1]. However, few, if any, have fo-
cused on the far more difficult problem of optimizing recurrent neural networks
(RNNs) aimed at processing temporal, sequential data such as time series, i.e.,
automated RNN design.

This study addresses the challenge of automated RNN design by developing
a novel ANN topology optimizer based on concepts from artificial evolution and
ant colony optimization (ACO). Specifically, we propose an algorithm called
Ant-based Neural Topology Search (ANTS), which automatically constructs and
optimizes the topology of RNNs, with a focus on time series data prediction. We
further experiment with variations of our ANTS method in the following ways:

– In order to encourage the discovery of more sparsely-connected neural topolo-
gies, we investigate different schemes for dynamically modifying the phero-
mone traces deposited by ant agents that compose the swarm. Specifically,
we introduce functions for introducing regularization into the overall opti-
mization, slowly clearing out densely-connected synaptic areas by depriving
poorly performing weights/edges of pheromone accumulation.

– We incorporate and analyze various weight initialization schemes and find
that a strategy incorporating communal intelligence where best found weights
are shared by the colony is highly effective.

– Inspired by the role-specialization that ants operate under within the context
of real-world ant colonies, we extend ANTS to utilize different specialized
ant agents to modularize the underlying synaptic connectivity construction
process, which we find greatly improves solutions found by our metaheuristic.

Experimentally, we validate our proposed nature-inspired metaheuristic on an
open-access real-world time series data set collected form a coal-fired power



plant. A rigorous ablation study of the ANTS algorithm is conducted by analyz-
ing the candidate network topologies it finds. A total over 1600 experiments with
varying heuristics and hyperparameters were performed, which entailed training
32, 000, 000 different RNNs. Our results indicate that ANTS is able to build well
performing, arbitrary RNN structures with connections that span both struc-
ture and time using both simple and complex memory cells. More importantly,
ANTS is shown to significantly outperform the well-known neuro-evolutionary
algorithm, NEAT [2], as well as the state-of-the-art evolutionary optimizer, EX-
AMM [3], which held the prior best results on this data set. Our ANTS source
code is open source and freely availiable on our GitHub repository∗.

2 Related Work

With respect to neuroevolution of recurrent network topologies, a great deal of
work already exists, ranging from stochastic alteration of the topology as in drop-
out [4] to something more sophisticated like that in the original NEAT [2] and
its more modern incarnate HyperNEAT [5]. Other proposed approaches include
EPNet [6], EANT [7], GeNet[8], CoDeepNEAT [9], and EXACT [10]. EXACT
was extended to evolve RNNs that used LSTM memory cells (named EXALT)
and shown to perform quite well on time-series prediction problems [11]. Later,
the algorithm, retitled EXAMM, was generalized to evolve networks consisting
of a library of recurrent memory cells [3]. These previously proposed ideas cen-
ter around the use of a genetic algorithm [12], where optimization is inspired
by approaches that draw from the evolution of organisms, of either Darwinian
and/or Lamarckian nature.

Nonetheless, very few studies in the body of work described above consider
ant colony optimization (ACO) [13] as the central optimizer for network topology,
and even fewer in general focus on exploring how to evolve complex temporal
models like the RNN, with EXALT and EXAMM being exceptions. Of the few
that have investigated ACO, most existing work has used it to strictly optimize
feed forward networks and, even in that case, have dominantly focused on either
initializing the weights of the connections [14], or on reducing the dimension of
the input vector solution space [15]. One notable effort that has used ACO for
RNN optimization in some form is [16], which used ACO to optimize smaller
neural network structures based on Elman recurrent networks [17].

This paper contributes to the domain of nature-inspired neural network
topology optimization by proposing a novel metaheuristic for evolving the full
structure of an RNN as opposed to prior studies that have applied the technique
as only a partial component of the optimization process [18] or in smaller El-
man RNN topologies with limited recurrent connectivity [16]. Furthermore, our
algorithm is capable of utilizing the same full suite of recurrent memory cells
as the state-of-the-art evolutionary algorithm EXAMM (LSTM, GRU, MGU,
UGRNN, and ∆-RNN cells). To the best of our knowledge, we are the first to

∗https://github.com/travisdesell/exact/tree/adding ant colony



propose an ACO-based approach to automate RNN design, offering a power-
ful procedure that combines concepts of both neuro-evolution and ant colony
metaheuristic optimization.

3 Ant-based Neural Topology Search (ANTS)

ANTS handles the optimization of ANN structures using a multi-agent system,
where each agent (an ant) treats the ANN as graph structure, considering neu-
ronal processing elements (PEs) as the nodes and the synaptic weights that
connect PEs as the edges. In order to design the operations that these agents
perform as well as the manner in which they traverse the ANN graph, we may
appeal to the metaphor of ants and the collective they holistically form, i.e.,
the ant colony. As a result, the agents will function based on simplifications of
myrmecological principles, such as the mechanics of ant-to-ant social interaction.

At a high level, in ANTS, the individual ant agents operate on a single mas-
sively connected “superstructure”, which contains all possible ways that PEs
may connect with each other both in terms of structure, i.e., all possible feed
forward pathways that start from the input/sensory PEs and end at the out-
put/actuator PEs, and time, i.e., all possible recurrent connections that span
many multiple time delays†. In our implementation, ants choose to move over
connections between nodes (or neurons), probabilistically and as a function of a
simulated chemical known as the “pheromone”, which is placed on connections
by ants based on how well they have been utilized to generate candidate RNNs.

ANTS was developed as an asynchronous parallel system for use on high per-
formance computing resources, which has a master process that maintains the
colony information and worker processes to (locally) train the RNNs. This paral-
lel implementation is asynchronous, the master process generates new RNNs as
needed for worker processes (which operate on separate, dedicated CPU or GPU
resources) and updates colony information and pheromones as trained RNN re-
sults are returned. This results in a naturally load balanced algorithm with high
scalability. From the overall superstructure, which the ant agents exclusively op-
erate on, RNN subnetworks are extracted (as dictated by the current pheromone
trace network available at the current simulation time step, which yields a map
of nodes and connecting synapses, both recurrent and feed forward, visited by
the ant agents) and sent to worker processes. The worker processes train the
extracteed RNNs locally with only a few epochs of back-propagation through
time (BPTT). After a particular worker is done locally training a RNN subnet-
work, the candidate’s weight values and cost (fitness) function (measure on a
validation subset of data) are communicated back to the swarm and superstruc-
ture (housed in the master process), adjusting the pheromone trace network and
affecting future ant agent traversal behavior.

†Note that this superstructure is more connected than a standard fully connected
neural network – each layer is also fully connected to each other layer as well, allow-
ing for forward and backward layer skipping connections, with additional recurrent
connections between node pairs for each time skip allowed.



Within the framework of ANTS, we investigate variations of its various un-
derlying mechanisms. These include the use of communal intelligence by sharing
the best weights found among the colony, allowing ant agents to also select from
multiple memory cell types as opposed to operating exclusively with simple neu-
rons, introducing specialized ants that have different graph traversal strategies,
and constraining ant movement and manipulating the pheromone evaporation
function in order to encourage the discovery of sparse RNN topologies. One
particularly crucial element in our ANTS procedure is the introduction of dif-
ferent ant agent types or species, which is inspired by how real ants specialize to
act according to specific roles to serve the needs of the colony [19]. Specifically,
we consider designing ant agents that serve specific roles in constructing parts
of candidate RNN subnetworks – some ants exclusively traverse feed forward
synaptic pathways while others only explore recurrent synaptic pathways.

3.1 Communal Weight Sharing

Randomly initializing edges and recurrent edges’ weights each time a new RNN
is generated requires local tuning (via BPTT) for many epochs for the RNN to
reach suitable generalization error, as they do not make use of any information
gained by prior trained RNN candidates. It has been shown that the resuse of
prior trained weights (i.e., epigenetic or Lamarckian weight initialization) can
significantly speed up the neuro-evolution process and result in better perform-
ing, smaller ANNs in general [20]. To apply similar use of prior knowledge, ANTS
utilizes a communal weight sharing strategy. Each edge in the ant swarm’s con-
nectivity super-structure also tracks a weight value in addition to its pheromone
value. These weights are randomly initialized uniformly U(−0.5, 0.5). Each time
a generated RNN performs well, the weights of its best performance, as mea-
sured on a validation data subset, are used to update the shared weight values
in the swarm’s super-structure.

Formally, we define phi (Φ) as a function of the population’s best and worse
evaluated RNN fitness, where Wcolonyi is the colony’s edge weight, WRNNi is the
corresponding neural network’s edge weight, fitpop best is the population’s best
fitness, and fitpop worst is the population’s worst fitness. Weight initialization
then proceeds as follows:

x =
fitnew − fitpop best

fitpop worst − fitpop best
(1a)

Φ(fitnew) = min

(
max

(
(1− x), 0

)
, 1

)
(1b)

Wcolonyi = ΦWRNNi + (1− Φ)Wcolonyi . (1c)

With respect to the function Φ, we investigated two variations. The first variant,
as shown in Equation 1, used the fitness of the RNN used to update the weights
to determine how much these new (locally found) weight values effect those of
the colony. The second variant of Φ was set to a predetermined constant instead



of being calculated or adjusted by fitness. This process essentially allows for a
running average (either with a fixed update or dynamic update based on fitness)
of the best weights found for each connection in the superstructure. When a new
RNN is generated, it uses the current weight values in whatever edges that were
extracted from the superstructure on the master process. This allows for the
colony to share information about the best weights found for each connectioin,
adapting them in a manner similar to a running average as new best candidate
RNNs and weights are found.

3.2 Memory Cell Selection

For any particular node in the super-structure, ANTS also has the ability to
utilize the pheromones present to select which memory cell type a particular
node will be in the generated network. A node could chosen to be either an
LSTM [21], a GRU [22], an MGU [23], a UGRNN [24], or a ∆-RNN cell [25].
We refer the reader to these works for the formulations of these memory cells.
Pheromones are deposited and updated for each of these memory cell possibilities
as described below.

3.3 Altering Graph Traversal with Ant Species

As mentioned above, we explored various strategies for guiding ant traversal over
the connectivity superstructure. Inspired by role specialization in real colonies,
we implemented ant agents that explored the connectivity graph in specific ways.
First, we started with a generic ant agent, called the standard ant, which was
allowed to traverse through the massively connected colony superstructure in
an unbiased manner. This, in essence, recovers the standard simple ant agent in
classic ACO, which has complete freedom to explore any piece of a given graph
structure. However, it became quickly apparent that this type of ant would
get “stuck” in the network, generating a significantly high number of recur-
rent connections before finally reaching an output node (explained in Figure 1).
This meant that the RNN candidates extracted for local fine-tuning were rather
dense, and in turn, compute-heavy (featuring many extraneous parameters as is
characteristic of over-parameterized models).

To prevent this problem, our first tactic was to alter the pheromone de-
posit function by adding extra pheromones to forward paths upon initialization
as well as after every pheromone update. If the total number of pheromones
on the forward edges out of a node was less than 75% of the total number of
pheromones on the recurrent edges out of the node, the pheromones on each
forward node were multiplied by the ratio of the total sum of outgoing recurrent
edge pheromones over the total sum of the outgoing forward edge pheromones.
This biasing method yielded better proportions of forward and backward paths.

Even with this forward path bias added to the pheromone deposit function,
when using standard ants, we found that ANTS still tended to favor the genera-
tion of fairly dense networks. Altering the number of ant agents used to explore
the structure as a means to control density of RNN candidates proved to help



Fig. 1: Potential paths an ant can
take from a given node (in orange)
with the massively-connected super-
structure. The number of recurrent
paths (red) far outnumber the forward
paths (green). This problem is exacer-
bated as the possible recurrent time
scale increases, which results in mul-
tiple backward recurrent connections
for each red connection, each going
back a different number of time steps
in the past.

Ants Traces

Explorer Ants

Social Forward Ants

Social Backward Ants

Fig. 2: In multi-role traversal, explorer
ants (red) first select the forward
paths in the network, creating a basic
structure for the RNN. The social ant
agents then select from the nodes cho-
sen by the explorer ants with forward
recurrent ants (blue) creating addi-
tional forward recurrent connections
and backward recurrent ants (green),
moving backwards from the output to-
ward the input, creating backward re-
current connections between the same
nodes.

somewhat but was rather unwieldy and entailed far too much external human
intervention. Instead, we developed an ant agent role specialization scheme that
we found worked far better as an automatic control mechanism to control the
network size and synaptic density.

The first agent role, the explorer ant, can only choose from forward connec-
tions in the connectivity superstructure. The connections selected by this special-
ized agent are utilized to generate the base neural structure upon which recur-
rent connections are then be added to. After the explorer ants have selected the
possible nodes and forward connections, two additional specializations of what
we call social ants are then used: i) forward recurrent ants and, ii) backward
recurrent ants. Social ants are first restricted to only visiting nodes that have
already been selected by the explorer ants. In the case of the forward recurrent
ants, when a path is chosen, the ant specifically creates a recurrent connection
that moves forward in the network along the same path, along with a selected
time skip (determined by pheromones). Backward recurrent ants, on the other
hand, move backwards through the network and, for each path between nodes
they take, a backward recurrent connection is added, along with a selected time
skip (also determined by pheromones). Figure 2 provides an example of possible
pathways that these specialized agents can take in a colony superstructure.

In addition to the development of specialized ant agents as described above,
we explored two modes for general ant movement; i) ants were allowed to pick
edges that could jump over layers in the colony (i.e., the superstructure is mas-
sively connected, with a plethora of skip connections), or ii) ants were only
allowed to select edges between consecutive layers (i.e., the superstructure is



fully connected, with no skip connections). This was tested to see the impact
that layer skipping would have on the sparsity and performance of generated
RNNs. Jumping and non-jumping modes were tested for both the standard ants
(with and without forward-path bias) and the specialized ant agent roles.

3.4 Updating Pheromone Values

Different strategies for pheromone placement were also examined. We define τ as
the pheromone value, α as the pheromone decay parameter, W as the weights of
the evaluated (candidate) RNN, and η as the candidate model’s fitness. Specif-
ically, we describe four different functional schemes used to model pheromone
deposits.

The first strategy we implemented for ANTS is standard for classical ACO se-
tups. This deposit scheme rewards well performing RNNs with a fixed (constant)
pheromone deposit while penalized ill-performing RNN models by evaporating
the pheromone trace by a constant evaporation value, C. Specifically, this ap-
proach is defined as:

τnew = τold ± C (2)

The second strategy we implemented was one that used the fitness (value) as a
parameter to guide pheromone deposit. This has been shown to improve ACO
performance in prior studies [15]. This scheme is defined as follows:

τnew = (1− α) · τold + α
1

η
(3)

The third strategy was to use the values of the neural synaptic weights themselves
to control/guide the deposit of pheromones. Specifically, we inserted a penalty
on the weights, specifically an L1 penalty (assuming a Laplacian prior of the
synaptic weight values), in order to encourage regularization that favored sparser
connectivity structure. This form of weight decay is sometimes applied to ANNs
when controlling for over-parameterization and sparse weight matrices (with
many near hard-zero values) are highly desirable. L1 regularization was applied
to the pheromone deposition calculation in the following manner:

τnew = (1− α) · τold + α
{ 1

η + γ
n‖W‖

}
(4)

The fourth and final strategy we employed was to insert an L2 penalty to regular-
ize the RNN candidate weights. This assumes a Gaussian prior over the synaptic
weight values and is sometimes referred to in ANN literature as “weight decay”.
We incorporate L2 regularization into pheromone deposition according to the
following formula:

τnew = (1− α) · τold + α
{ 1

η + γ
2n‖W‖2

}
(5)

We developed these L1 and L2 functional variations of pheromone deposit schemes
in the hopes that they would ultimately encourage/reward the uncovery of
sparse, compact RNN predictive models.



3.5 Pheromone Evaporation

Lastly, pheromone trace values (deposited on the superstructures synaptic edge
pathways) were allowed to evaporate or “decay” after each generation of an RNN
in order to reduce the amount of pheromones on synaptic edges that have not
been recently beneficial and to encourage exploration [15, 14, 26]. Pheromone
values are updated (or decayed) according to the following equation:

τupdated = (1− β) · τcurrent + β · τoriginal (6)

where τupdated is the pheromone value after the update, τcurrent is the current
pheromone value, τoriginal is the original baseline pheromone value, and β is
the pheromone evaporation rate. This function evaporates the pheromone back
towards the original baseline value.

4 Results

ANTS was compared to both NEAT and EXAMM, as well as traditional layered
RNN architectures. All ANTS and EXAMM experiments generated 2000 total
RNNs, training each for 10 epochs. NEAT, on the other hand, was allowed to
generate 420, 000 RNNs. If we assume that a forward pass (forward propagation)
and a backward pass (backprop calculation) are approximately the same com-
putationally, this generously gave NEAT approximately 10 times the amount of
compute time (as 2000 RNNs trained for 10 epochs would equivocate to 20, 000
forward and 20, 000 backward passes). The RNNs with non-evolvable (fixed) ar-
chitectures were allowed to train for 70 epochs. Every experiment was repeated
10 times to compute means and standard deviations in order to ensure a proper
statistical comparison.

ANTS used a colony superstructure with 12 input nodes, 3 hidden layers,
each with 12 hidden nodes, and a single output node. Recurrent synapses could
span 1, 2 or 3 steps in time. The resulting connectivity superstructure consisted
of 49 nodes, 924 edges, and 3626 recurrent edges. While this may seem modest
compared to modern convolutional architectures, which may consist of millions
of connections, it is important to note that the RNNs generated from this super-
structure are unrolled over 7200 time steps (according to the time series length of
the training and testing data samples) when trained locally via backpropagation
through time (BPTT). This means algorithms such as ANTS must handle (fully-
unrolled) networks of up to 3, 528, 000 nodes, 6, 652, 800 edges, and 26, 107, 200
recurrent edges with errors from the final output (predictor) potentially back-
propagated over up to 28, 000 synaptic connections.

The dataset utilized in this study is an open access time series dataset
taken from a coal fired powerplant. The data was introduced in previous neuro-
evolution studies for time series data prediction [11, 27]. It consists of 12 possible
parameters, recorded for 10 days with each parameter recorded at each minute.
These 12 parameters were used to predict the flame intensity parameter (the
response variable, in regression parlance). Results were generated by training



RNNs on 5 days worth of data taken from one of the coal burners from this data
set. Fitness values (mean absolute error) were calculated on the other 5 days,
which was data that was treated as a test set.

1, 600 experiments were conducted in order to include all combinations of
the ANTS options/variations (described below). Each experiment was repeated
10 times to obtain robust results. These ANTS experiments generated, trained,
and evaluated 32 million RNNs. Experiments were scheduled on a high perfor-
mance computing cluster with 64 Intel R© Xeon R© Gold 6150 CPUs, each with 36
cores and 375 GB RAM (total 2304 cores and 24 TB of RAM). Each experi-
ment utilized 15 nodes. Overall, the experiments took approximately 30 days to
complete.

4.1 Backpropagation Hyperparameters

All ANNs were trained with backprop and stochastic gradient descent (SGD)
using the same hyperparameters. SGD was run with a learning rate η = 0.001
and used Nesterov momentum (mu = 0.9) to smooth out the local gradient
descent. No dropout regularization was used since it has been shown in other
work to reduce performance when training RNNs for time series prediction [18].
To prevent exploding gradients, gradients were re-scaled using gradient clipping
(as prescribed by Pascanu et al. [28]) when the norm of the gradient was above
a threshold of 1.0. To improve performance in the case of vanishing gradients,
gradient boosting (the opposite of clipping) was used when the norm of the
gradient was below a threshold of 0.05. The forget gate bias of the LSTM cells
had 1.0 added to it as this has been shown to yield significant improvements in
training time by Jozefowicz et al. [29]. Weights for RNN in all other cases were
initialized as described in the section describing our communal weight sharing 3.1
scheme for ANTS and or by EXAMM’s Lamarckian weight inheritance [3].

4.2 ANTS Options and Hyper-parameters

The influence/effect of individual ANTS hyper-parameters was carefully inves-
tigated in this study. A pheromone decay rate of α = 0.05 and a pheromone
evaporation rate of β = 0.1 were chosen as they were shown to be effective in
preliminary tests and is within the recommended standard range [15]. The other
ANTS parameters we considered were:

1. Number of ants : {20, 40, 80, 160}.
2. Regularization update parameter: {0.25, 0.65, 0.90}.
3. Initializing RNN using communally shared weights with constant Φ values

of ({0.3, 0.6, 0.9}), using Φ as calculated by a function of fitness, and basic
randomized weight initialization.

The application of the examined heuristics that appear in the figures and tables
that follow are labeled as follows:

1. Function Φ : Φ()



2. Constant Φ: Φvalue of Φ

3. L1 Pheromone regularization: L1value of γ (Equation 4)

4. L2 Pheromone regularization: L2value of γ (Equation 5)

5. Standard Ant Species: Without Bias (Std) and With Bias (StdBias)

6. Multi Species Ants:

– Explorer Ants: Exp

– Explorer Ants and Forward Social Ants: ExpFwd

– Explorer Ants and Backward Social Ants: ExpBwd

– Explorer Ants, Forward and Backward Social Ants: ExpFwdBwd

7. Layer Jumping: AJ

8. No Layer Jumping: OJ

4.3 Performance of Individual Heuristics

Fig. 3: Performance of NEAT, EXAMM, & individually applied ANTS heuristics
against fixed memory cell RNNs.

Figure 3 presents the performance of ANTS when each each heuristic is ap-
plied separately. Furthermore, it presents for comparison the performance of the
state-of-the-art EXAMM, NEAT, and traditional fixed standard RNNs. While
ANTS in this case (augmented only by individual heuristics) did not outperform
EXAMM except for some outliers, both EXAMM and ANTS showed dramati-
cally better performance than NEAT, even though NEAT was given a significant
amount of extra compute time. ANTS, EXAMM and NEAT also significantly
outperformed traditional RNNs. Some of the gain over NEAT is most likely due
to the use of backpropagation by EXAMM and ANTS since NEAT uses fairly
simple and non-gradient based recombination operations to adjust weights.



Top 10 Top 25 Top 100 Top 250
Mean Median Best Mean Median Best Mean Median Best Mean Median Best

Φ() 3(0) 4(0) 3(0) 9(0) 7(0) 9(0) 26(0) 23(0) 31(8) 58(0) 54(0) 49(8)
ConstΦ 7(0) 6(0) 7(0) 14(0) 14(0) 12(0) 60(0) 63(0) 54(8) 147(0) 149(0) 155(16)
NoΦ 0(0) 0(0) 0(0) 2(0) 4(0) 4(0) 14(0) 14(0) 15(0) 45(0) 47(0) 46(0)
L1 2(0) 4(0) 0(0) 9(0) 8(0) 3(3) 42(0) 34(0) 30(4) 96(0) 96(0) 91(4)
L2 5(0) 5(0) 6(0) 13(0) 12(0) 16(1) 40(0) 45(0) 38(3) 100(0) 98(0) 95(12)
StdAnts 0 0 0 1 0 0 3 0 0 20 19 0
StdBiasAnts 0 0 0 0 0 0 3 1 0 23 16 0
ExpAnts 0 0 10 0 0 25 1 0 100 10 6 250
ExpFrdAnts 6 7 0 14 15 0 45 49 0 98 103 0
ExpBkwAnts 0 0 0 0 0 0 0 0 0 0 0 0
ExpFrdBkwAnts 4 3 0 10 10 0 48 50 0 99 106 0
No Jump 0 0 5 0 0 13 0 0 52 0 0 128
Layer Jump 10 10 5 25 25 12 100 100 48 250 250 122
20 Ants 0 0 2 0 0 6 0 0 24 0 0 65
40 Ants 2 0 3 5 1 7 14 15 23 50 57 63
80 Ants 4 3 2 8 11 6 44 45 26 82 80 60
160 Ants 4 7 3 12 13 6 42 40 27 118 113 62

Table 1: Heuristic Ranking Statistics
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Fig. 4: Performance of EXAMM and the top 25 ANTS experiments

4.4 Performance of Combined Heuristics

The combined application of multiple different heuristics, as illustrated in Fig-
ure 4, yielded ANTS results that outperformed all baselines, including the fixed
RNNs, NEAT, as well as EXAMM. Table 1 provides statistics ranking each of
the heuristics based on how many times the experiments that utilized them ap-
peared in the top 10, 25, 100, and 250 best results as determined by the mean,
median, and the best performance of the RNN generated in the experiment’s 10
repeats. Values in parentheses are the number of times an experiment that only



utilized that single heuristic appeared in that top ranking. The utilization of
multiple heuristics dominated the top results, with individually-applied heuris-
tics not appearing in the top 10, and only 4 times in the top 25 (only as best
results).

Communal weight sharing proved to be very important, yielding strong per-
formance, with all of the top 10 utilizing either functional or constant Φ param-
eters. Furthermore, it also occurred 2 (mean), 4 (median) and 4 (best) times in
the top 10, and 14 (mean), 14 (median), and 15 (best) times in the top 25. Ad-
ditionally, all of the best performing RNNs used layer-jumping ants, which tend
favor more sparse connectivity patterns. Most of the best results used pheromone
weight-regularization, with L2 regularization appearing at a nearly 50% rate in
the top 10, 25 and 100 results. The regularization factor was also high, at 65%
or 90%, for most of the 25 best experiments that used it.

All of the top 250 best results utilized the multiple ant species heuristic,
which strongly supports the use of specialized ants. The number of ants varied
between 20 and 160 for all the top 25 results in the mean and median case,
with a larger number of ants tending to perform better. However the case of
20 ants did occasionally appear in the best cases, even sometimes in the top
10 and, furthermore, these networks tended to be rather sparse but very well
performing. This may suggest that the experiments that utilized more ants had
an easier time finding the most important structures, but also potentially had
extraneous connections which were not needed. In contrast, the experiments
with less ants had less of a chance of finding these important structures due to
lower (overall) connectivity. This suggests that further optimizations could be
designed to better guide ANTS towards the discovery of more efficient networks.

Perhaps one the most interesting items to observe is the performance dis-
tribution when multiple ant agent roles was used in ANTS. The entirety of the
best found RNNs, up to the top 250 were from explorer ants only, so these gen-
erated RNNs only had recurrent connectivity in terms of whatever the various
memory cells offered. However, for the mean and median performance of the ex-
periments, nearly all the top 25, 100, and 250 consisted of explorer and forward
recurrent roles or explorer, forward, and backward recurrent ant specializations
– with only a very few of the only explorer ant only configurations showing up
in the top 100 and 250. First, this suggests that backward recurrent connections
(which are most commonly utilized in RNNs) were less effective than forward
recurrent connections. Second, it also appears that adding these recurrent con-
nections tended to make the RNNs perform significantly better on the average
and median cases, while the RNNs which were generated with only explorer ants
had the ability to occasionally find RNNs that generalized quite well. These re-
sults certainly suggest further study in order to better understand the effect of
combining recurrent connections and memory cells. In addition, perhaps alter-
native strategies can be developed that retain the stability of adding recurrent
connections while still efficiently finding well-generalizing RNNs.



5 Discussion

To the best of our knowledge, this work represents the first application of ant
colony optimization (ACO) to the problem of neuro-evolution/neural architec-
ture search for recurrent neural networks with varying recurrent time spans
and more complex connectivity patterns, with the introduction of the novel
Ant-based Neural Topology Search (ANTS) algorithm. ANTS generates can-
didate RNNs from a massively-connected superstructure (the colony/swarm),
taking advantage of ACO for structural optimization and concepts from neuro-
evolutionary/genetic approaches for maintaining populations of RNN candidates
that are trained locally and asynchronously (making ANTS a memetic procedure
as well). A hallmark of ANTS is its computational formalization of role special-
ization as done by real ant colonies – ant agents are prevented from getting stuck
“wandering” around the superstructure through the use of different ant roles,
which are constrained to only explore different components of the underlying
complex graph space. We also utilize a noval communal intelligence strategy for
sharing and updating the best found weights within the colony.

Our experimental results show that using ants with different roles gener-
ated RNNs that were not only sparse but performant – these candidates almost
entirely outperformed the more standard ant traversal strategies even when stan-
dard ants were biased to select forward paths. Furthermore, communal weight
sharing greatly improved the accuracy of the generated RNNs‡. Additionally,
allowing ants to jump (or skip) layers proved to not only boost performance
but also to increase sparsity. Lastly, to our knowledge the introduction of L1
and L2 regularization into the ACO pheromone deposition process is quite novel
if albeit a bit unconventional. Our results show by playing with the form of
the pheromone adjustment function, we can increase the likelihood that sparser
RNNs are found that also outperform schemes that do not incorporate regu-
larization/constraints. The strategies we formalize in this work are generic and
could be applied to any other ACO algorithm’s pheromone update process.

The proposed ANTS metaheuristic not only provides advances and new con-
cepts for the field of ant colony optimization research to further explore but
also shows strong promise for its use as an alternative neuro-evolution algorithm
for automated RNN architecture search. It significantly outperforms the well-
known NEAT algorithm (even when NEAT is given an order of magnitude more
computation), and, more importantly, ANTS outperforms the state-of-the-art
EXAMM neuro-evolution algorithm on the studied time series problem.

The work also opens up multiple avenues for future study and presents in-
teresting questions. In particular, why were explorer ants able to find the best
performing networks while performing quite poorly in the mean and median
cases? Why did explorer ants combined with social recurrent ants perform ex-
tremely well in the mean and median cases but not in the best cases? Answering
experimental questions such as these could lead to insights as to how recurrent

‡Corraborating prior studies that have also shown the benefits of similar initializa-
tion schemes [20, 3].



connections that skip multiple steps of time interact with recurrent memory cells,
potentially leading to the design of more expressive RNN structures that better
capture longer-term dependencies in sequential data. Finally, future work should
entail investigation of ANTS on other time series datasets as well as sequence
modeling (and classification) problems more commonly explored in mainstream
statistical learning research, such as language modeling [30, 25].
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