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Abstract. Transfer learning involves taking an artificial neural network
(ANN) trained on one dataset (the source) and adapting it to a new,
second dataset (the target). While transfer learning has been shown to
be quite powerful and is commonly used in most modern-day statistical
learning setups, its use has generally been restricted by architecture, i.e.,
in order to facilitate the reuse of internal learned synaptic weights, the
underlying topology of the ANN to be transferred across tasks must re-
main the same and a new output layer must be attached (entailing tossing
out the old output layer’s weights). This work removes this restriction
by proposing a neuro-evolutionary approach that facilitates what we call
adaptive structure transfer learning, which means that an ANN can be
transferred across tasks that have different input and output dimensions
while having the internal latent structure continuously optimized. We
test the proposed optimizer on two challenging real-world time series pre-
diction problems — our process adapts recurrent neural networks (RNNs)
to 1) predict coal-fired power plant data before and after the addition of
new sensors, and to 2) predict engine parameters where RNN estimators
are trained on different airframes with different engines. Experiments
show that not only does the proposed neuro-evolutionary transfer learn-
ing process result in RNNs that evolve and train faster on the target set
than those trained from scratch but, in many cases, the RNNs generalize
better even after a long training and evolution process. To our knowl-
edge, this work represents the first use of neuro-evolution for transfer
learning, especially for RNNs, and is the first methodological framework
capable of adapting entire structures for arbitrary input/output spaces.

Keywords: Neuro-Evolution - Recurrent Neural Networks - Time Series
Data Prediction - Transfer Learning.

1 Introduction

Transfer learning has proven to be a powerful tool for training artificial neu-
ral networks (ANNs), allowing them to re-use knowledge gained after training
on one task in order to better, more quickly generalize on a new target task.
However, one of the key limitations of ANN-based transfer learning is that the



process typically requires neural architecture being transferred to remain fixed
so that the previously its trained weights to be reused or tuned. Furthermore,
transfer learning is generally only utilized for classification-based tasks, where
the underlying neural structure is feedforward or convolutional in nature, with
little to no attention paid to transferring knowledge across recurrent neural net-
works (RNNs) aside from the notable exception of partial knowledge transfer
through the use of pre-trained embeddings of (sub)words and phrases [1,2]. In
addition, to our knowledge, no work exists on developing a transfer learning
framework for RNNs for the far harder task of time series forecasting.

Why is time series forecasting so important? We argue that countless real-
world systems would benefit from the ability to forecast or predict data. A cloud-
based self-adaptive hosting system will benefit from being able to anticipate fu-
ture resource needs. The ability to predict user loads and the time necessary to
allocate the required resources to handle these loads would enable the system to
proactively begin the adaptation process in advance. This would enable the sys-
tem to account for the tactic latency [3] when invoking additional resources and
appropriately support increased user levels. Conversely, being able to anticipate
reduced user loads would enable such a system to proactively begin to deactivate
resources; thus enabling the system to reduce costs [4,5]. Mechanical systems,
such as self-driving cars and UASs would also benefit from the ability to more ac-
curately predict the need for preventative maintenance which is critically impor-
tant for cost and safety reasons. RNNs have proven to be powerful predictors of
these types of complicated and correlated time series data. Furthermore, transfer
learning, the kind of which we described earlier, could potentially empower these
systems even further, allowing them to readily internally-used ANNs/RNNs in
the event that new sensors become available or are corrupted/destroyed or when
mechanical structures are modified or upgraded.

A major use of transfer learning has been for specialization. Gupta et al.
used RNNs to make predictions of phenotypes — an RNN is trained to predict
20 different phenotypes based on clinical time series data and then this trained
network is retrained to predict previously unseen phenotypes for which there
are varying amounts of labeled data [6]. Zhang et al. made use of this same
principle when predicting the remaining useful life (RUL) of various systems
when data was scarce [7]. They show that training a model with related source
data and then “specializing” the model by tuning it to available target data leads
to significantly better performance when compared to a model only trained on
target data. There have been a number of variants and improvements built on
this general idea [7-10], also known as “pre-training”. However, none of these
works alter the structure of the ANNs being transferred.

Transfer learning with minor structural changes has been investigated, where
mid-level features are transferred from a source task to a target task. In these
cases, new output layers are fine-tuned on target data. Mun et al. derived
mid-level features (parameters) from the hidden layers of an ANN trained on a
source task and then transferred those features to a target task. The ANN for the
target task was constructed by removing the output layer from the source ANN



and then augmented with two new additional hidden layers, i.e., “adaptation
layers”, as well as a new output layer [11]. Along similar lines, Taylor et al.
utilize NEAT to evolve inter-task mappings to translate trained neural network
policies from a source to a target network [12]. Yang et al. took this concept
further to designing designing networks for cross-domain, cross-application, and
cross-lingual transfer settings [13]. Vierbancsics et al. used a different approach
where an indirect encoding is evolved which can be applied to neural network
tasks different structures [14].

Hinton et al. proposed the concept of “knowledge distillation”, where an
ensemble of teacher models are “compressed” (or the knowledge of which is
transferred) to a single pupil model [15]. In their experiments a distilled single
model performed nearly as well as the ensemble itself (also outperforming a single
baseline model). Tang et al. have also conducted the converse of this experiment
— they train a complex pupil model using a simpler teacher model [16]. Their
findings demonstrate that knowledge gathered by a simple teacher model can
effectively be transferred to a more complex pupil model (which has greater
generalization capability). Deo et al. also concatenated mid-level features from
two datasets as input yo a target feed forward network [17].

Ultimately, none of the above transfer learning strategies have involved any
significant architectural changes to the networks being transferred. This work
overcomes this limitation by proposing a neuro-evolutionary approach. Previ-
ously trained neural networks can be adapted to new tasks with different inputs
and outputs by allowing the system to alter the input and output layers and
only generating new minimal connectivity to these new components. Following
this, a neuro-evolutionary process can then be used to adapt the internal struc-
ture of the ANN/RNN, reusing all applicable internal architectural components
and weights. We have expanded the Evolutionary eXploration of Augmenting
Memory Models (EXAMM) algorithm [18] to facilitate this kind of “adaptive
structure transfer learning” and apply it to time series data prediction problems
in two real world domains: power systems and aviation. Our results indicate that
this process yields good RNN estimators faster when new sensors are added to
a coal-fired power plant, resulting in predictors with more accurate predictive
ability than those trained from scratch. We show that in some cases it is even
possible to the transfer knowledge of the RNNs trained to predict engine pa-
rameters between aircraft and airframes with different engines and structural
designs.

2 Evolutionary eXploration of Augmenting Memory
Models (EXAMM)

EXAMM progressively evolves larger RNNs through a series of mutation oper-
ations and crossover (reproduction), as shown in Figure 1. Mutations can occur
at the edge level, e.g., split edge, add edge, enable edge, add recurrent edge, and
disable edge operations, or as higher-level node mutations, e.g., add node, and
split node. The type of an added node is selected uniformly at random from a



suite of simple neurons, A-RNN units [19], gated recurrent units (GRUs) [20],
long short-term memory cells (LSTMs) [21], minimal gated units (MGUs) [22],
and update gate RNN cells (UGRNNS) [23], which allows EXAMM to select for
the best performing recurrent memory units. Recurrent edges are added with
a time-skip selected uniformly at random, i.e., ~ U(1,10). For more details on
these operations we refer the reader to [18].

To speed up the neuro-evolution process, EXAMM utilizes an asynchronous,
distributed computing strategy incorporating islands to promote speciation, which
promotes both exploration and exploitation of the (massive) search space. A
master process maintains a population for each island and generates new RNN
candidate models from the islands in a round-robin manner. Candidate models
are locally trained, via back-propagation of errors (backprop), upon request by
workers. When a worker completes the training of an RNN, that RNN is inserted
into the island it was generated from if and only if its fitness, i.e., validation set
mean squared error, is better than the worst fitness score in the island. The
insertion of this RNN is then followed by removal of the worst RNN in the
island. This asynchrony is particularly important as the generated RNNs will
have different architectures, each taking a different amount of time to train. It
allows the workers to complete the training of the generated RNNs at whatever
speed they can, yielding an algorithm that is naturally load-balanced. Unlike
synchronous parallel evolutionary strategies, EXAMM easily scales up to any
number of available processors, allowing population sizes that are independent
of processor availability. The EXAMM codebase has a multi-threaded implemen-
tation for multi-core CPUs as well as an MPI [24] implementation which allows
EXAMM to operate using high performance computing resources.

3 Adaptive Structure Transfer Learning

EXAMM typically initializes each island population with the minimal network
configuration/topology possible for the given inputs and outputs, i.e., each input
has a single feedforward connection to each output (as shown in Figure 1a). Each
island population starts with this minimal configuration, which is sent to the first
worker requesting an RNN to be trained. Subsequent requests for work from that
island create new RNN candidates from mutations of the minimal network until
the population is full. After an island population is full, EXAMM will start
generating new RNNs utilizing both intra-island crossover and mutation. When
all islands are full, then EXAMM will generate new RNNs from inter-island
crossover in addition to the aforementioned intra-island crossover and mutation.

To enable transfer learning, this work extends EXAMM by allowing it to
accept any ANN in place of the initial minimal network configuration. To fill
the island populations, mutations of the provided initial ANN are made and
intra-island and inter-island crossover continue as described earlier. In addi-
tion, we extend EXAMM to adjust the network in the face of different numbers
of inputs and outputs, a capability not yet demonstrated in any other transfer
learning technique or application. To accomplish this, EXAMM first adjusts the



) The edge between Input 1 and Out-
put 1 is split, adding two edges and a
new node with innovation number (IN)
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Fig. 1. Edge and node mutation operations.



Output 1 selected for removal

%?'

¢) Output 4 is added and connected to
all inputs.

I
l—\l

(e) Input 2 and connections are removed.

7]
e

) Output 1 and connections are re-
moved

Iat

(d) Input 2 is selected for removal.

e — 7]
=

(f) Input 4 is added and connected to all
outputs.

(g) Nodes 3 and 4 are not forward and
backward reachable, they are selected for

removal.

(h) Nodes 3 and 4 and their connections
are removed.

Fig. 2. The adaptive structure transfer learning process.



network’s output nodes and then its input nodes (see Figure 2 for an example
of this process). If outputs need to be removed, their respective output nodes
are removed along with any edges incoming to those particular output nodes. If
outputs need to be added, they are connected to each existing input. Similarly, if
inputs need to be removed, their respective input nodes are removed along with
all of the respective outgoing edges. Finally, if input nodes need to be added,
they are added and connected with a synapse connecting them to each output.

Removing inputs and outputs potentially disconnect parts of the RNN’s
graph such that they are either never reached from either a backprop pass or
their output never effects the final output of the RNN. To safeguard against this,
after a mutation or crossover operation is completed, EXAMM checks that all
edges and nodes to ensure both forward reach-ability, i.e., there is a path to the
edge or node from an enabled input node, and their backward reach-ability, i.e.,
there is a path from the node or to any output. Nodes and edges that are neither
forward nor backward reachable (by any path of enabled nodes and edges) are
disabled and no longer utilized in the backprop-adjustment process. They can
however later be reconnected and enabled via EXAMM’s mutation and crossover
operations.

Following this, the EXAMM neuro-evolution process can continue as normal,
adapting the transferred neural structures to the new inputs and outputs by
adding new internal nodes and edges via EXAMM’s mutation and crossover
operations. This allows the learning process to be bootstrapped by reusing of
the previously learned structure and potentially all of the (source) weights.

4 Transfer Learning Examples

This work examines two case studies of real-world transfer learning involving
large-scale system sensor data. The first involves prediction of coal fired power
plant parameters transferring RNNs trained before the addition of new sensor
capabilities to new RNNs including the new sensor inputs. The second involves
predicting engine parameters of three different aircraft with different airframes
and engines. While the coal fired power plant data used in this study is propri-
etary and could not be made public, the aviation data has been made openly
available to ensure reproducibility of our results and to encourage further study’.

4.1 Coal-fired Power Plant Transfer Learning

The source dataset for training RNNs consisted of four data files, each containing
approximately 24.5 hours of per-minute data readings from one of the coal plant’s
burners. This time series was characterized by 12 parameters: 1) Conditioner
Inlet Temp, 2) Conditioner Outlet Temp, 3) Coal Feeder Rate, 4) Primary Air
Flow, 5) Primary Air Split, 6) System Secondary Air Flow Total, 7) Secondary
Air Flow, 8) Secondary Air Split, 9) Tertiary Air Split, 10) Total Combined Air

! https://github.com/travisdesell /exact/tree/master/datasets



Flow, 11) Supplementary Fuel Flow, and 12) Main Flame Intensity. From this
dataset, the Main Flame Intensity parameter was the one selected for prediction
due to its practical use in determining potential plant issues and performance
optimization. It is mostly a product of internal burner conditions and parameters
related to coal quality which makes it challenging to predict.

The target dataset consisted of another four data files, each containing 24.5
hours of per-minute data from the same burner, which also included fuel quality
parameters from a newly-installed full stream elemental analyzer (FSEA) sensor.
This data set added 8 new parameters: 1) Base Acid Ratio, 2) Ash Content, 3) Na
(Sodium) Content, 4) Fe (Iron) Content, 5) BTU, 6) Ash Flow, 7) Na (Sodium,)
Flow, and 8) Fe (Iron) Flow. RNNs evolved by EXAMM on the source data were
transferred to this dataset, making use of these additional 8 inputs.

4.2 Aviation Transfer Learning

The source data for the aviation transfer learning problem consisted of 36 flights
gathered from the National General Aviation Flight Information Database?. This
flight data comes from three different airframes, 12 of these flights are from
Cessna 172 Skyhawks (C172s), 12 are from Piper PA-28 Cherokees (PA28s) and
the last 12 from Piper PA-44 Seminoles (PA44s). Each of the 36 flights came
from a different aircraft. The duration of each flight ranged from 1 to 3 hours,
with data coming from 26 sensors for PA28s, 31 sensors for C172s, and 39 sensors
for PA44s. These different airframes have significant design differences, as shown
in Figure 3. C172s have a single engine and are “high wing”, i.e., wings are on
the top, PA28s have a single engine and are “low wing”, i.e., wings are on the
bottom, and PA44s have dual engines and are low wing.

(a) Cessna 172 Skyhawk  (b) Piper PA-288 Cherokee (c) Piper PA-44 Seminole

Fig. 3. The three different airframes used for aviation transfer learning in this work
(images under creative commons licenses).

These aircraft share 18 common sensor parameters: 1) Altitude Above Ground
Level (AtAGL), 2) Barometric Altitude (AltB), 3) GPS Altitude (AltGPS), 4)
Altitude Miles Above Sea Level (AltMSL), 5) Fuel Quantity Left (FQtyL), 6)

2 http://ngafid.org



Fuel Quantity Right (FQtyR), 7) Ground Speed (GndSpd), 8) Indicated Air Speed
(IAS), 9) Lateral Acceleration (LatAc), 10) Normal Acceleration (NormAc), 11)
Outside Air Temperature (OAT), 12) Pitch, 13) Roll, 14) True Airspeed (TAS),
15) Vertical Speed (VSpd), 16) Vertical Speed Gs (VSpdG), 17) Wind Direction
(WndDir), and 18) Wind Speed (WndSpd).

Since each of these airframes have different engines, they have different sets
of engine sensor parameters. The C172 and PA44 have an absolute barometric
pressure sensor which the PA28 does not. PA28s add the following 8 parameters:
1) Engine 1 Ezhaust Gas Temperature 1 (E1 EGT1), 2) Engine 1 Ezhaust Gas
Temperature 2 (E1 EGT2), 3) Engine 1 Exhaust Gas Temperature 8 (E1 EGT3),
4) Engine 1 Ezhaust Gas Temperature 4 (E1 EGTY), 5) Engine 1 Fuel Flow (E1
FFlow), 6) Engine 1 Oil Pressure (E1 OilP), 7), Engine 1 Oil Temperature (E1
OilT), and 8) Engine 1 Rotations Per minute (E1 RPM).

C172s add the following 13 parameters: 1) Absolute Barometric Pressure
(BaroA), 2) Engine 1 Cylinder Head Temperature 1 (E1 CHT1), 3) Engine 1
Cylinder Head Temperature 2 (E1 CHT2), 4) Engine 1 Cylinder Head Temper-
ature 3 (E1 CHTS3), 5) Engine 1 Cylinder Head Temperature 4 (E1 CHTY),
6) Engine 1 Exhaust Gas Temperature 1 (E1 EGT1), 7) Engine 1 Exhaust Gas
Temperature 2 (E1 EGT2), 8) Engine 1 Exhaust Gas Temperature 8 (E1 EGT3),
9) Engine 1 Ezhaust Gas Temperature 4 (E1 EGT4), 10) Engine 1 Fuel Flow
(E1 FFlow), 11) Engine 1 Oil Pressure (E1 OilP), 12) Engine 1 Oil Temperature
(E1 OilT) and 13) Engine 1 Rotations Per minute (E1 RPM).

Finally, PA44s add the following 21 parameters: 1) Absolute Barometric Pres-
sure (BaroA), 2) Engine 1 Cylinder Head Temperature 1 (E1 CHT1), 3) Engine
1 Ezhaust Gas Temperature 1 (E1 EGT1), 4) Engine 1 Ezhaust Gas Temper-
ature 2 (E1 EGT2), 5) Engine 1 Ezhaust Gas Temperature 8 (E1 EGTS3), 6)
Engine 1 Ezhaust Gas Temperature 4 (E1 EGT4), 7) Engine 1 Fuel Flow (E1
FFlow), 8) Engine 1 Oil Pressure (E1 OilP), 9) Engine 1 Oil Temperature (E1
OilT), 10) Engine 1 Rotations Per minute (E1 RPM), 11) Engine 1 Manifold
Absolute Pressure (E1 MAP), 12) Engine 2 Cylinder Head Temperature 1 (E1
CHT1), 13) Engine 2 Exhaust Gas Temperature 1 (E1 EGT1), 14) Engine 2 FEx-
haust Gas Temperature 2 (E1 EGT2), 15) Engine 2 Exhaust Gas Temperature 3
(E1 EGTS), 16) Engine 2 Ezhaust Gas Temperature 4 (E1 EGTY), 17) Engine
2 Fuel Flow (E1 FFlow), 18) Engine 2 Oil Pressure (E1 OilP), 19) Engine 2 Oil
Temperature (E1 OilT), 20) Engine 2 Rotations Per minute (E1 RPM), and 21)
Engine 2 Manifold Absolute Pressure (E1 MAP).

The underlying task for these problems was to predict all the EGT parame-
ters from the engines, so RNNs predicting on PA28 or C172 data would predict
E1 EGT1-4, and RNNs predicting on PA44 data would predict both E1 EGT1-4
and E2 EGT1-4. We examine transferring RNNs trained and evolved by EX-
AMM on each of these 3 airframe sources to each of other airframes as a target.
Inputs are added or removed by the evolutionary transfer process to make the
most of available sensor inputs. Likewise, outputs are added or removed to pre-
dict the EGTs of either 1 or 2 engines depending on the airframe. This transfer
problem is particularly interesting given that it requires evolved/trained RNNs



must learn to transfer useful knowledge between aircraft with different airframes
and engines.

5 Results

5.1 EXAMM and Backpropagation Hyperparameters

Each EXAMM neuro-evolution run consisted of 4 islands, each with a population
size of 10. New RNNs were generated via intra-island crossover (at rate of 20%),
mutation at rate 70%, and inter-island crossover at 10% rate. All of EXAMM’s
mutation operations (except for split edge) were utilized, each chosen with a
uniform 10% chance. EXAMM generated new nodes by selecting from simple
neurons, A-RNN; GRU, LSTM, MGU and UGRNN memory cells (uniformly at
random). Each EXAMM run on the plant data generated 2000 RNNs and each
on the aviation data generated 4000 RNNs. Recurrent connections could span
any time-skip between 1 and 10, chosen uniformly at random.

All RNNs were locally trained for 4 epochs with backpropagation through
time (BPTT) [25] and stochastic gradient descent (SGD) using the same hyper-
parameters. SGD was run with a learning rate of n = 0.001, utilizing Nesterov
momentum with mu = 0.9. No dropout regularization was used as it was shown
in prior work to reduce performance when training RNNs for time series predic-
tion [26]. For the LSTM cells that EXAMM could make use of, the forget gate
bias had a value of 1.0 added to it (motivated by [27]). Otherwise, RNN weights
were initialized by EXAMM'’s Lamarckian strategy. To prevent exploding gradi-
ents, gradient clipping (as described by Pascanu et al. [28]) was used when the
norm of the gradient was above a threshold of 1.0. To improve performance on
vanishing gradients, gradient boosting (the opposite of clipping) was used when
the norm of the gradient went a threshold of 0.05.

5.2 Experiments

For each transfer experiment, EXAMM was repeated 10 times on the source
data. For the coal plant data, data files 1-3 were used as training data and data
file 4 was used as testing data. For the aviation data, the first 9 flights were used
as training data, with the last 3 flights used as testing data. The RNNs with
the best mean squared error (MSE) from each of the 10 EXAMM runs on the
source data were used as the initial genomes for EXAMM when it was run on
the target data.

Coal Plant Transfer Learning EXAMM was trained on the source coal plant
data (without fuel quality parameters) 10 times as described above. EXAMM
was then trained 10 times from scratch using the target data (the coal plant data
including the fuel quality parameters), as well as 10 times using the best RNN
generated from each of the 10 source data EXAMM runs. Figure 4 presents the
convergence of the MSE of the best found RNNs of each EXAMM run started



from scratch on the target data, as well as the convergence of the 10 EXAMM
runs starting from the RNNs transferred from the source runs.

10-1 Coal Power Plant Transfer Learning
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Fig. 4. Convergence rates (in terms of best MSE) for the EXAMM runs starting from
scratch on the target coal plant data (No TL), and the EXAMM runs starting with
RNNs transferred from the source data (TL).

For the coal plant transfer learning scenario, the EXAMM runs using adap-
tive structure transfer learning showed significant improvements in performance.
The MSE of predictions for the transfer learning runs started with lower MSEs
and the non-transfer learning EXAMM runs never reached similar performance
even after 2000 RNNs were evolved and trained.

Aviation Transfer Learning Figure 5 shows the performance of adaptive
structure transfer learning using each of the airframes (C172, PA28 and PA44)
as a source transferred to each other airframe as a target, i.e., RNNs evolved
and trained using EXAMM on C172 data were transferred to EXAMM runs with
PA28 and PA44 data, PA28 source RNNs were transferred to C172 and PA44
targets, and PA44 source RNNs were transferred to C172 and PA28 RNNs. Since
each airframe type had different input parameters, and the PA44 runs had addi-
tional outputs, this problem served as a useful case where adding and removing
inputs and outputs from the RNN structures during transfer was necessary.

The aviation transfer learning problem proved to be more challenging than
the coal plant problem. While the coal plant data all came from the same sys-
tem, with the transfer target adding new sensor data; each of the flights used
as training and testing data came from different aircraft, and the three different
airframes transferred between had significant design and engine differences. Ad-
ditionally, while the RNNs were predicting similar engine parameters they were
transferred from different engine designs.
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The simplest airframe with the least number of parameters (PA28) proved to
be the easiest to transfer to. Using both C172 and PA44 source data, the transfer
learning-based EXAMM runs swiftly outperformed the EXAMM runs trained
on PA28 data from scratch while the runs from scratch never caught up to
the transfer learning runs. Transferring from the most complicated PA44 source
took longer to perform better than the runs from scratch, however it eventually
reached similar performance to the C172 transfer learning runs. Interestingly,
the runs from scratch never converged to the transfer learning runs, indicating
that performing transfer learning may have improved the generalization ability
of the evolved RNNs (in addition to faster learning).

For C172 predictions, using PA28 as a source for transfer had similar results
as above with the transfer learning runs swiftly performing better than those
trained from scratch on C172 data (with the from scratch runs never catch-
ing up). However, the transfer learning runs with PA44 data as a source never
reached similar performance. This is potentially due to the difference between
both the airframes, the number engines and a change in the number of outputs.
PA44 transferred to PA28 may have performed better due to similarities in their
engines and airframes, coming from the same manufacturer; whereas the C172
airframe and engine may have been too different for the transfer process to work.

Lastly, transfer learning struggled when PA28 and C172 data was used as a
source with the most complicated PA44 data as a target. While the runs with
C172 data came close to runs on the PA44 data from scratch they never quite
reached the same performance. The PA28 source runs did not perform nearly
as well, most likely due to the large difference in both inputs and outputs (26
inputs and 4 outputs vs. 39 inputs and 8 outputs). In general, this may indicate
that adding outputs results in a more challenging knowledge transfer problem.

Group Nodes Edges Recurrent Edges
min [ max [ avg | min [ max [ avg | min [ max [ avg
C172 Source 35 | 384 43 | 124 | 156.2 198 1 6.0 21
PA28 Source 30 | 32.2 38 | 103 | 124.1 179 0 4.1 21
PA44 Source 54 | 59.2 70 | 465 | 541.5 680 16 43.5 75

C172 to PA28 32 | 393 50 | 130 | 181.3 225 10 22.4 42
C172 to PA44 56 | 71.3 92 | 511 | 704.8 | 1014 28 83.6 | 171
PA28 to PA44 48 | 52.7 59 | 331 | 385.6 462 3 12.2 45
PA28 to C172 35 | 44.4 75 | 136 | 214.7 506 8 30.1 | 125
PA44 to PA28 46 | 75.7 | 128 | 351 | 716.9 | 1499 42 | 178.4 | 409
PA44 to C172 46 | 53.2 66 | 267 | 346.5 466 22 42.4 62

Table 1. Size of the evolved and transferred RNNs.

Table 1 provides a closer investigation of the evolved and transferred RNNs.
The table demonstrates that the PA44 prediction problem is significantly more
complicated than that of the PA28 and C172 airframes. The number of nodes,
edges, and recurrent edges in the RNNs trained from scratch on the PA44 source



data (see the PA44 Source row) are an order of magnitude larger than those
trained from scratch on the PA28 and C172 data. It appears that EXAMM runs
with RNNs transferred from C172 and PA28 source data to PA44 target data
were unable to reach the required complexity swiftly enough (causing issues).

6 Discussion

This work demonstrates initial findings in utilizing neuro-evolution as a strategy
to speed up transfer learning of RNNs applied to time series data forecasting.
This research is particularly novel in that it is not only the first work to utilize
neuro-evoluton for transfer learning (to our knowledge) but also that it is the first
transfer learning strategy that is capable of structural adaptation. Our approach
modifies the input and output layers by adding and removing nodes as needed
to transfer potential structures between different prediction tasks, continuing to
evolve network structures beyond the initial network structure transfer.

The results are both promising and raise interesting directions for future
work. With respect to data from a coal-fired power plant scenario where new
sensor capabilities for determining fuel quality became available, RNNs trained
on prior data without the new sensors serving as the transfer source were able to
evolve and train on the target task faster in the short term and also continued to
outperform RNNs only trained on the target dataset with the new sensor data;
indicating that the transfer learning process improves generalization. Further-
more, using aviation data from three different airframes, it was shown that it is
possible to successfully transfer knowledge from RNNs trained on aircraft with
different airframes and engines when predicting engine parameters. This was
particularly impressive given that we were transferring predictive ability from
engine parameters from different engine designs and different airframe designs.
When conducting transfer learning from the most complicated airframe type
(PA44) to simpler airframe types (PA28 and C172) or between the simpler air-
frame types (PA28 and C172) we showed similar improvement in generalization
— the RNNs generated via our transfer learning process performed better than
those trained from scratch on target data.

Nonetheless, the aviation data did present some challenges. Transferring to
the more complicated PA44 airframe with two engines proved to be challenging.
The experiments transferring to PA44 as a target did not perform as well as
those trained on the PA44 data from scratch. An analysis of the transferred and
evolved RNNs showed that this could possibly be due to the additional target
outputs from the additional engine compounded by the additional complexity of
the prediction task (RNNs evolved for the PA44 data were an order of magnitude
larger in size). Determining if it is possible to transfer to a more complicated
system remains an area of future work and might potentially be enabled by
utilizing different strategies for adding/removing the output/input nodes.

In conclusion, this work presents a novel and promising direction for neuro-
evolution research. Compared to other transfer learning strategies that simply
reuse weights and architectures on target data with minimal modification, using



a adaptive structure methodology driven by neuro-evolution allows modification
of inputs in the case of sensor data and could even allow the modification of
input layer size if applied to the adaptation of convolutional neural networks.
In addition, this approach allows the internal structure of the transferred net-
works to continue to be adapted, providing even better performance. This work
provides a new opportunity to allow ANNs to quickly learn when exposed to
different data and more quickly transfer learned knowledge to across prediction
tasks.
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