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Abstract. Neuroevolution commonly uses speciation strategies to bet-
ter explore the search space of neural network architectures. One such
speciation strategy is the use of islands, which are also popular in im-
proving the performance of distributed evolutionary algorithms. How-
ever, islands may experience stagnation, which prevents their conver-
gence towards better solutions and can result in wasted computation.
This work evaluates utilizing an island extinction and repopulation mech-
anism to avoid premature convergence using Evolutionary eXploration of
Augmenting Memory Models (EXAMM), an asynchronous island based
neuroevolution algorithm that progressively evolves recurrent neural net-
works (RNNs). In island extinction and repopulation, all members of the
worst performing island are erased periodically and repopulated with mu-
tated versions of the global best RNN. This island based strategy is ad-
ditionally compared to NEAT’s (NeuroEvolution of Augmenting Topolo-
gies) speciation strategy. Experiments were performed using two different
real-world time series datasets (coal-fired power plant and aviation flight
data). With statistical significance, results show that in addition to being
more scalable, this island extinction and repopulation strategy evolves
better global best genomes than both EXAMM’s original island based
strategy and NEAT’s speciation strategy. The extinction and repopu-
lation strategy is easy to implement, and can be generically applied to
other neuroevolution algorithms.

Keywords: NeuroEvolution · Neural Architecture Search · Extinction
· Repopulation · Recurrent Neural Networks · Time Series Prediction.

1 Introduction

Neuroevolution (NE), or the evolution of artificial neural networks (ANNs), has
been widely applied as a neural architecture search strategy for a variety of

? This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Combustion Systems under Award Number
#FE0031547 and by the Federal Aviation Administration and MITRE Corporation
under the National General Aviation Flight Information Database (NGAFID) award.
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machine learning problems, including image classification, natural language pro-
cessing, reinforcement learning and time series data prediction [32, 23]. As the
complexity of the tasks ANNs are trained to solve increases, manually designing
the network becomes impossible, especially when they may need to be optimized
for multiple criteria such as cost, latency, power consumption, and accuracy. NE
provides a way to evolve ANNs in large and high dimensional space without prior
knowledge, searching through the growing number of ANN building blocks, such
as activation functions, memory cells, convolutional filter, and feature map types,
while at the same time determining network topology.

NE algorithms tend to be computationally expensive in that candidate neu-
ral networks need to be trained or otherwise evaluated to determine their fitness.
Because of this, most NE algorithms are distributed in order to make progress
more quickly. The use of islands, as a common strategy in distributed evolu-
tionary algorithms, has been shown to potentially provide significant speedup
beyond distribution, as islands can evolve independently with smaller popula-
tions as different species more quickly, with the periodic transfer best found
solutions [1]. However, if we look into how species evolve, we find that different
species converge and evolve at different speeds. Some species show premature
convergence and can become stuck at local optima. In this work, we take inspi-
ration from extinction and repopulation mechanisms, which have shown to speed
up evolution and speciation in the real world [25] as well as in EAs [11, 20, 15,
37] and apply them to distributed NE algorithms.

This work presents a novel extinction and repopulation strategy that repop-
ulates poorly performing islands by first removing all the genomes in the island
and then repopulating it with random mutations of the global best genome.
Experiments explore how the frequency of extinction and the number of ran-
dom mutations applied to the global best genome affect the island based evolu-
tion strategy. This was done using the Evolutionary eXploration of Augmenting
Memory Models (EXAMM) [26] algorithm that evolves deep Recurrent Neu-
ral Networks (RNN) for time series data prediction. We further implemented
NEAT’s speciation strategy in EXAMM, so it could be fairly compared as a
benchmark. To test the robustness of this strategy, we used two real world,
non-seasonal, large scale time series data sets from aviation data and a coal-
fired power plant. Results show that the new extinction and repopulation based
strategies outperform baseline EXAMM and NEAT’s speciation strategy with
statistical significance.

2 Related Work

According to the history of biological evolution, extinction plays an important
role in the process of evolution [25, 8, 7]. It will erase the species that are not
suited for their niches and create opportunities for new species to emerge. Sim-
ilarly in EAs, research conducted by Greenwood et al. [11] and Krink et al. [20]
show that applying mass extinction can enhance the performance in evolutionary
search. A mass extinction mechanism was also shown to significantly improve
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hybrid particle swarm optimizer model performance [39], and more recently,
Lehman et al. proved using extinction events is an effective mechanism for di-
vergent search algorithms [21].

In addition to extinction, the biological concepts of migration and repopu-
lation are also applied in EAs to improve performance. Grefenstette et al. have
investigated replacing a percentage of the population with randomly generated
individuals [12]. De Falco et al. take the inspiration of biological invasion and
migrate genomes into other subpopulations to compete with native genomes [4].
Hernandez et al. replace a fraction of the population with selective repopula-
tion [15], and Wan et al. take genomes generated from “elite clusters” to ran-
domly replace individuals in the population [37].

In terms of speciation for NE, NEAT (Evolving Neural Networks through
Augmenting Topologies) [31] presented one of the first speciation strategies for
NE, where genomes speciate by tracking historical genes and measuring the dis-
tance between new genomes and an existing species. This has been extended
with Natural Evolution Speciation for NEAT (NENEAT) [18], which replaces
NEAT’s speciation with a cladistic strategy, where all the genomes in the same
species share a subset of nodes. Trujillo et al. speciate evolutionary robotics
in the behavior space [35], whereas NEAT and NENEAT speciate genomes in
topology space. Hadjiivanov et al. also investigated a complexity-based specia-
tion strategy, which groups genomes by their number of hidden neurons [13].

Other than strategies to divide genomes into different species, evolutionary
rules such as mutation, crossover, weight initialization, and distance functions,
can be used to drive speciation and improve EA performance. Verbancsics et
al. investigated the effect of crossover and mutation on the NE speciation strate-
gies [36]. Mathias et al. explored the use of extinction for path finding GAs in
a continuous environment [24]. Sun et al. applied a variable length gene encod-
ing to avoid the network depth constraint for solving complex problems [34].
Krčah et al. modified NEAT’s fitness evaluation rule by changing the capacity
of species dynamically [19]. Lastly, instead of using objective functions to mea-
sure the fitness of a genome, Lehman et al. instead drove search using behavior
novelty [22].

In contrast to these strategies, the extinction and repopulation presented in
this paper is easily adaptable to any NE or EA method utilizing islands, and
does not require fitness modifications or the calculation of expensive distance
metrics, which in many cases need to be evaluated against all other individuals
or species within the population, which can significantly degrade performance
in a distributed EA. In fact, when comparing to NEAT’s speciation strategy,
this issue became apparent as we were limited in the number of processors we
could scale to (see section 4.4). The strategy is also easier to use and tune, only
requiring users to specify the frequency of extinction and repopulation events.
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3 Methodology

3.1 Evolutionary eXploration of Augmenting Memory Models

This work utilizes the Evolutionary eXploration of Augmenting Memory Models
(EXAMM) neuroevolution algorithm [26] to explore the extinction and repop-
ulation of islands. EXAMM evolves progressively larger RNNs through a series
of mutation and crossover (reproduction) operations. Mutations can be edge-
based: split edge, add edge, enable edge, add recurrent edge, and disable edge
operations, or work as higher-level node-based mutations: disable node, enable
node, add node, split node and merge node. The type of node to be added is se-
lected uniformly at random from a suite of simple neurons and complex memory
cells: ∆-RNN units [27], gated recurrent units (GRUs) [2], long short-term mem-
ory cells (LSTMs) [16], minimal gated units (MGUs) [40], and update gate RNN
cells (UGRNNs) [3]. This allows EXAMM to select for the best performing recur-
rent memory units. EXAMM also allows for deep recurrent connections, which
enables the RNN to directly use information beyond the previous time step.
These deep recurrent connections have proven to offer significant improvements
in model generalization, even yielding models that outperform state-of-the-art
gated architectures [5]. EXAMM has both a multithreaded implementation and
a Message Passing Interface (MPI) implementation for distributed use on high
performance computing resources. To the authors’ knowledge, these capabilities
are not available in other neuroevolution frameworks capable of evolving RNNs,
which is the primary reason EXAMM was selected for this work.

EXAMM uses an asynchronous island based evolution strategy with a fixed
number of islands n, each with an island capacity m. During the evolution pro-
cess, islands go through two phases: initialized, and filled. During the initializa-
tion phase, each island starts with one seed genome, which is the minimal possi-
ble feed-forward neural network structure with no hidden layers, with the input
layer fully connected to the output layer. Worker processes repeatedly request
genomes to evaluate from the master process using a work stealing approach.

On receiving a genome, the worker then evaluates its fitness, calculated
as mean squared error (MSE) on a validation data set after being trained by
stochastic back propagation through time (BPTT). When reported back to the
master process, if the island is not full, it is inserted into the island, or if the
fitness is better than the worst genome in that island, it will replace the worst
genome. The master generates new genomes from islands in a round-robin man-
ner, by doing one random mutation on randomly selected genomes from an
island until that island reaches its maximum capacity m, and its status becomes
filled. When all islands are filled, they repopulate through inter-island crossover,
intra-island crossover and mutation operations. Intra-island crossover selects
two random genomes from the same island, and the child gets inserted back
to where its parents come from. Inter-island crossover selects the first parent
at random from the target island, and the second parent is the best genome
from another randomly selected island. As islands are distinct sub-populations
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and evolve independently, the only chance for the islands to exchange genes is
through inter-island crossover.

The weights of the seed genome, generated during the initialization phase, are
initialized uniformly at random between −0.5 and 0.5, or by the Kaiming [14] or
Xavier [9] strategies. After this, RNNs, generated through mutation or crossover,
reuse parental weights, allowing the RNNs to train from where the parents left
off, i.e., “Lamarckian” weight initialization. Mutation operations may add new
nodes or/and edges that are not present in the parent, and these are initialized
using a normal distribution of the average µ and variance σ2 of the best parent’s
weights. During crossover, in the case where an edge or node exists in both
parents, the child weights are generated by recombining the parents’ weights.
Given a random number −0.5 <= r <= 1.5, a child’s weight wc is set to wc =
r(wp2−wp1) +wp1, where wp1 is the weight from the more fit parent, and wp2 is
the weight from the less fit parent. This allows the child weights to be set along
a gradient calculated from the weights of the two parents, allowing for informed
exploration of the weight space of the two parents.

3.2 EXAMM Island Repopulation and Extinction

While investigating the performance of the EXAMM algorithm, it was observed
that islands do not converge at the same speed, and some are stagnant. A naive
approach to repopulation would be to erase the prematurely converged island
and restart from scratch, however, given that the other islands will have well-
developed genomes, it might be impossible for the restarted island to ever catch
up. Further, it would involve re-examining the preliminary regions of the search
space. Taking inspiration from nature, most new species are not directly evolved
from a single-celled organism. In common cases, a group of organisms evolves in
a certain direction to adapt to a new niche, and eventually new species emerge.
With this as motivation, we utilize the idea of immigrating existing genomes to
the worst island for repopulation. In addition, we opt for using mutations on
these immigrating genomes to bring innovation through the evolution process,
allowing them to potentially further explore new niches.

Using our proposed strategy, the EXAMM island repopulation strategy has
now three phases: initialization, filled, and repopulation. The initialization phase
is the same as original EXAMM. However, after all the islands become filled, we
introduce periodic extinction mechanisms to the worst performing island. At the
time of an extinction mechanism, all the islands are ranked based on their best
genome’s fitness, and all the genomes in the worst island are removed. Then this
depopulated island moves into the repopulation phase. During this phase, new
genomes for the island are generated by randomly performing m mutations on
the global best genome until the island is full and goes back to filled status. To
handle the asynchronous RNN evaluation in EXAMM, when a worker processes
return trained RNNs generated from before the extinction mechanism, they are
not added to the repopulating island and instead immediately removed. Through
this, these periodic extinction mechanisms encourage further diversity in the
entire population.
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To repopulate an island, there are two ways EXAMM uses to find and erase
the worst performing island: 1) the worst island can be repopulated at any ex-
tinction event, and 2) if an island becomes the worst island again after being
repopulated, it has to wait for e other extinction events before it can become
extinct and be repopulated again. The difference between the two strategies is
that the second gives the newly repopulated island more time to evolve. As a
repopulated island might need more time to evolve and find new well performing
genomes, if the extinction mechanisms keep erasing the worst island regardless
of its recent repopulation, the same island might end up being repeatedly repop-
ulated. On the other hand, mutated global best genomes can perform better or
worse than the original ones, especially when more than one mutation are ap-
plied together. If an island has not caught up with the rest of the population by
the next extinction mechanism, it may have become stagnant in different local
optima.

3.3 NEAT Speciation

To compare to a benchmark strategy, we utilized the speciation strategy from
the popular Neuro-Evolution of Augmenting Topologies (NEAT) [31]. Newer
versions of NEAT, such as HyperNeat [33] were not used because they cannot
easily be applied to recurrent neural networks, especially those with modern
memory cells. Further, HyperNEAT still utilizes NEAT’s speciation strategy to
generate its compositional pattern producing networks as opposed to a different
strategy. Instead of using an island strategy, NEAT organizes genomes into small
sub-populations, or species. New genomes are inserted into the first species in
which the distance δ between the new genome and a random genome inserted
from last generation is less than threshold δt. The distance is calculated using a
distance function, δ:

δ =
C1E

N
+
C2D

N
+ C3W (1)

where E and D are the excess and disjoint genes between two genomes, and W
is the weight difference of matching genes. c1, c2, and c3 are hyperparameters
adjusting the weight of those factors and N is the number of genes in the larger
genome.

NEAT does not limit the number of species or the species capacity. The
species size is controlled by explicit fitness sharing [10]. A genome’s adjusted
fitness f ′i is calculated by:

f ′i =
fi∑n

j=1 sh(δ(i, j))
(2)

When distance between two genomes i and j exceeds a threshold δt, sh is set
to 0, sh is 1 otherwise [30]. Genomes who have a high adjusted fitness f ′i are
removed. If the best fitness of a species does not improve in 15 generations, this
species loses the ability to reproduce. If the entire population does not improve
for 20 generations, then only the top 2 species are allowed to reproduce.
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4 Results

4.1 Data Sets

Two datasets were utilized to test the varying speciation strategies1. The first
comes from a coal-fired power plant, and the second comes from a selection of
10 flights worth of data from the National General Aviation Flight Information
Database (NGAFID). Both datasets are multivariate, with 12 and 31 parameters,
respectively, non-seasonal, and the parameter recordings are not independent.
Furthermore, they are very long – the aviation time series range from 1 to 3
hours worth of per-second data, while the power plant data consists of 10 days
worth of per-minute readings. Main flame intensity was chosen as the predic-
tion parameter from the coal data set, and pitch was chosen as the prediction
parameter from the flight data set.

4.2 Hyperparameter Settings

Each EXAMM run used 10 islands, each with a maximum capacity of 10 genomes.
EXAMM was then allowed to evolve and train 20, 000 genomes (RNNs) through
its neuroevolution process. New RNNs were generated via mutation at a rate of
70%, intra-island crossover at a rate of 20%, and inter-island crossover at a rate
of 10%. 10 out of EXAMM’s 11 mutation operations were utilized (all except for
split edge), and each was chosen with a uniform 10% chance. EXAMM generated
new nodes by selecting from simple neurons, ∆-RNN, GRU, LSTM, MGU, and
UGRNN memory cells uniformly at random. Recurrent connections could span
any time-skip generated randomly between U(1, 10).

In related work, EXAMM has been shown to significantly outperform stan-
dard NEAT [6]. We attribute this to the fact that EXAMM can create nodes
from a library of recurrent memory cells, has additional node level mutations,
uses a Lamarckian/epigenetic weight inheritance strategy, and trains RNNs via
stochastic gradient descent and back propagation through time (BPTT). On the
other hand, NEAT only deploys edge-level mutations and has a rather simple
evolutionary strategy to assign weights to networks. Additionally, NEAT was
not designed for large scale parallelism, and uses a synchronous strategy for
iteratively generating new populations. Due to this, we implemented NEAT’s
speciation strategy within the EXAMM framework to compare the speciation
strategies without confounding effects from other algorithmic details.

NEAT typically generates 150 genomes per generation, and if a species has
not improved its best fitness within 15 generations, it will be disabled and not
allowed to procreate. It will further disable the entire population except for the
top 2 species if the whole population has not found a new best fitness within 20
generations. To convert NEAT’s generation based strategy to EXAMM’s asyn-
chronous strategy, which does not have explicit generations, species were instead

1 These data sets are made publicly available at EXAMM GitHub repository:
https://github.com/travisdesell/exact/tree/master/datasets/ for reproduction of
these results
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disabled if they did not improve after 2250 new genomes were inserted (the same
number of total genomes as 15 generations of 150 genomes), and all species ex-
cept the top 2 were disabled if the best found fitness did not improve after 3000
genomes were inserted. The hyperparameters used for NEAT’s speciation strat-
egy were c1 = 1, c2 = 1, c3 = 0.4, and the fitness threshold was set to δt = 0.6
for the coal dataset, and δt = 0.4 for the flight dataset. The c1, c2 and c3 hy-
perparameters are the standard NEAT values, however the δt values were hand
tuned to ensure good speciation. The NEAT runs were highly sensitive to δt and
we found higher values resulted in all genomes clustering to the same species,
and lower values resulted in each genome having its own species.

For both EXAMM and NEAT, all RNNs were locally trained for 10 epochs
via stochastic gradient descent (SGD) and using back propagation through time
(BPTT) [38] to compute gradients, all using the same hyperparameters. RNN
weights were initialized by EXAMM’s Lamarckian strategy (described in [26]),
which allows child RNNs to reuse parental weights, significantly reducing the
number of epochs required for the neuroevolution’s local RNN training steps.
SGD was run with a learning rate of η = 0.001 and used Nesterov momentum
with µ = 0.9. For the memory cells with forget gates, the forget gate bias had a
value of 1.0 added to it (motivated by [17]). To prevent exploding gradients, gra-
dient scaling [28] was used when the norm of the gradient exceeded a threshold
of 1.0. To combat vanishing gradients, gradient boosting (the opposite of scal-
ing) was used when the gradient norm was below 0.05. These parameters have
been selected as they were recommended in previous papers about the EXAMM
algorithm.

4.3 Experimental Design

Due to the stochastic nature of our experiments, we performed 20 repeats for each
NEAT and EXAMM experiment on the coal and flight data sets. For EXAMM,
we compared the baseline strategy (islands without extinction mechanism) to
the two variations of the extinction strategy, one allowing repeated repopulations
and the other not. For these strategies, extinction frequencies of 1000 and 2000
generated genomes were evaluated, and during the repopulation process, we
allowed the global best genome (at the time of the extinction mechanism) to
be mutated m times, with m = 0, 2, 4, or 8, before being inserted into the
repopulated island. This resulted in a total of 680 experiments, 20 for NEAT,
20 for baseline EXAMM, and 320 for the 2 extinction strategies, 2 extinction
frequencies, and 4 mutation values for each of the 2 datasets. For the experiments
which disallowed repeated extinction for e = 2 events.

Various experiments were performed to get an understanding of how the
frequency of extinction mechanism affected performance, i.e., did having more
frequent extinction mechanisms prevent repopulated islands from catching up
and improving on the global best solution? Additionally, the two extinction
strategies allowed us to determine the impact of allowing islands to be repeatedly
made extinct, to see if they needed even more time to become well performing.
Finally, modifying the mutation rates was done to provide an idea of how much
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exploration needed to be performed when repopulating the islands, to allow them
to find new potentially better areas in the search space.

4.4 Computing Environment

Results were gathered using Rochester Institute of Technology’s research com-
puting systems. This system consists of 2304 Intel® Xeon® Gold 6150 CPU
2.70GHz cores and 24 TB RAM, with compute nodes running the RedHat Enter-
prise Linux 7 system. All EXAMM baseline and EXAMM speciation strategies
experiments utilized 180 cores. Since the NEAT speciation strategy is imple-
mented in the EXAMM framework, and the EXAMM master process is respon-
sible for generating and inserting genomes, whereas worker processes are only
responsible for stochastic back propagation training and evaluate the fitness of
genomes, all the genome distances and explicate fitness sharing evaluations were
done in the master process. Utilizing NEAT’s speciation strategy presented a
speed bottleneck at the master process when using a larger number of cores.
Therefore, the NEAT runs were limited to 72 cores, as adding additional cores
did not improve runtime.

4.5 Repopulation Strategy Evaluation

Figures 1 and 2 present the performance across the 20 repeated experiments for
NEAT speciation and the EXAMM variations. The solid line shows the average
of the global best genomes across the 20 experiments, and the filled in area shows
the range between the min and max. The test results show that the EXAMM
extinction and repopulation strategies perform better than baseline EXAMM
algorithm across all tests, with the NEAT speciation strategy performing worse
than baseline EXAMM. On average, in three of the coal plant test cases and two
of the four flight test cases, 2 mutations resulted in the best performing genomes.
For the other test cases, applying 4 or 8 mutations found the best performing
genomes, and all those test cases come from non-repeated repopulations for both
datasets, which proves that innovations need more time to evolve and become
better. The results also suggest that adding some, but not too much variance
to the global best genome for island repopulation allowed the strategies to best
find new regions of the search space to improve performance.

As a further investigation, Table 1 presents Mann–Whitney U test p-values
comparing the best genomes of the 20 repeats from the various strategies to the
best genomes from the 20 repeats of baseline EXAMM. p-values in bold represent
statistically significant differences with α = 0.05, showing that the results of
the varying mutation strategies have a statistically significant difference from
EXAMM, which similarly has a statistically significant difference from NEAT
speciation.

Table 1 also provides more detail about the best, average and worst global
best genome fitness at the end of the 20 repeated tests for each experiment. From
this we can see that in the average cases having a faster extinction frequency
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Fig. 1: Convergence rates (in terms of best MSE on validation data) for NEAT speci-
ation and the EXAMM extinction and repopulation strategies predicting main flame
intensity from the coal fired power plant dataset.

Fig. 2: Convergence rates (in terms of best MSE on validation data) for NEAT specia-
tion and the EXAMM extinction and repopulation strategies predicting pitch from the
c172 flight dataset.
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Erase Extinct
Dataset Rule Freq Mutation p-Value Worst Avg Best

Coal

EXAMM / / / 0.00125 0.00099 0.00072
NEAT / / 7.15e-8 0.00238 0.00178 0.00115

Repeat

1000

0 4.55e-2 0.00123 0.00088 0.00054
2 8.05e-5 0.00117 0.00079 0.00059
4 1.58e-2 0.00116 0.00086 0.00054
8 2.06e-2 0.00123 0.00088 0.00067

2000

0 5.68e-2 0.00109 0.00089 0.00053
2 1.28e-3 0.00108 0.00082 0.00062
4 1.98e-3 0.00108 0.00084 0.00060
8 7.74e-3 0.00105 0.00086 0.00064

No
Repeat

1000

0 2.28e-1 0.00122 0.00093 0.00057
2 4.89e-3 0.00120 0.00083 0.00051
4 6.32e-2 0.00126 0.00089 0.00056
8 2.20e-1 0.00132 0.00094 0.00070

2000

0 9.99e-5 0.00116 0.00079 0.00057
2 3.28e-3 0.00107 0.00084 0.00058
4 7.39e-2 0.00112 0.00091 0.00065
8 3.82e-2 0.00118 0.00090 0.00064

C172

EXAMM / / / 0.00765 0.00480 0.00316
NEAT / / 1.3e-6 0.01725 0.00755 0.00473

Repeat

1000

0 5.72e-3 0.00526 0.00404 0.00229
2 3.31e-5 0.00514 0.00360 0.00236
4 2.56e-3 0.00523 0.00401 0.00282
8 5.72e-3 0.00538 0.00401 0.00242

2000

0 2.16e-3 0.00606 0.00385 0.00223
2 1.52e-4 0.00556 0.00371 0.00234
4 1.28e-2 0.00584 0.00399 0.00252
8 1.04e-2 0.00621 0.00411 0.00216

No
Repeat

1000

0 3.70e-5 0.00513 0.00366 0.00281
2 3.70e-5 0.00497 0.00355 0.00240
4 4.18e-4 0.00672 0.00382 0.00266
8 4.64e-5 0.00554 0.00355 0.00258

2000

0 5.07e-4 0.00539 0.00387 0.00257
2 3.02e-3 0.00590 0.00398 0.00246
4 1.17e-3 0.00643 0.00381 0.00163
8 4.89e-3 0.00577 0.00411 0.00300

Table 1: Performance of the various strategies for the varying EXAMM experiments,
with best values marked bold. Mann–Whitney U test p-values are included comparing
EXAMM to NEAT speciation and the different extinction and repopulation strategies.
p-values in bold indicate a statistically significant difference with α = 0.05.

of 1000 generally provided the best results, providing more evidence that per-
forming extinction and repopulation improves the performance of neuroevolution
strategy. Interestingly, the strategy which allowed islands to not be repeatedly
erased provided slightly better results in the best case for both the coal and
flight data.

To provide more insight into how the repopulation strategies were affecting
the islands, Figure 3 and 4 shows an average of the frequency in which islands
were repopulated when allowing islands to be repeatedly repopulated or not.
For example, the upper left subplot in Figure 3 shows that for predicting main
flame intensity, with an extinction frequency of 1000 and 0 mutations to the
global best on repopulation, on average 1.25 islands never are repopulated, 3.75
islands are repopulated once, 3 islands are repopulated twice, and so on. Note
that when generating 20,000 genomes for the runs, EXAMM removes the worst
island 19 times when the extinction frequency is 1000, and 9 times when the
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Fig. 3: The average number of times islands were repopulated across the repeated and
no repeated experiments using the various EXAMM repopulation strategies on Coal
dataset.

Fig. 4: The average number of times islands were repopulated across the repeated and
no repeated experiments using the various EXAMM repopulation strategies on C172
dataset.
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extinction frequency is 2000. These figures show that when allowing islands to
be repeatedly repopulated, in many cases, the same islands are frequently re-
populated, while the others are not. The figures also show a trend that when
repeated repopulation is disallowed, the number of islands never repopulated is
slightly reduced. Further, when applying more mutations during the repopulat-
ing phase, the same islands tend to be repopulated more frequently (i.e., the
number of islands that are never repopulated increases). This is most likely due
to the fact that having too many mutations brings excessive variety or innova-
tion to the new island population, making the performance of the repopulated
island unstable. Interestingly, even in light of this we did not see much benefit
from disallowing repeated repopulation (as shown in Tables 1), suggesting that
if a repopulated island does not quickly find new better genomes, it does not
have a good chance of finding better results if given more time to evolve.

5 Conclusion

This work investigates a novel speciation strategy based on extinction and re-
population mechanisms for island based evolutionary algorithms, applying it to
neuroevolution of recurrent neural networks for time series data prediction on
two challenging real-world data sets. In this strategy, the worst performing is-
lands periodically experience extinction events and are repopulated with either
the global best genome or mutations of it. Two versions of this strategy were
implemented, one which allowed islands to be repeatedly repopulated and the
other which prevented an island from being repopulated until a specified number
of extinction events occurred on other islands. We investigated versions of this
strategy with varying extinction frequencies, as well as numbers of mutations to
the global best genome.

These mutation strategies were incorporated into the Evolutionary eXplo-
ration of Augmenting Memory Models (EXAMM) neuroevolution project, along
with NEAT’s speciation strategy as a benchmark comparison to a well-known
neuroevolution technique. Results show that the repopulation strategy led to
statistically significant improvements over baseline EXAMM, which in turn had
large and statistically significant improvements over NEAT’s speciation strategy.
The repopulation strategies were also found to be more scalable than NEAT’s
strategy which requires determining the distance of each new genome to all
others in the population to perform speciation. While the number of mutations
applied to the global genome during repopulation was not significantly correlated
with the best performance, in general a lower number (2 or 4) provided the best
results. Having more mutations brought more innovation, but was also more un-
stable, leading to repopulated islands being repeatedly erased. Allowing islands
to be repeatedly repopulated had advantages and disadvantages, where repeated
repopulation would remove “bad” genomes more quickly, but preventing repeat
repopulations protected innovations, giving the repopulated islands more time
to evolve. In general, both strategies (allowing and disallowing repeated repopu-
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lation) provided statistically significant improvements over not using extinction
and repopulation, but interestingly, neither significantly outperformed the other.

This work explored how a different number of mutations combined with dif-
ferent island extinction rules affected the repopulation process. Future work will
involve examining other types of island extinction mechanisms, for example eras-
ing multiple islands during an extinction, or controlling extinction mechanisms
based on how much an island has improved over a period of time. Other options
for repopulation can also be investigated beyond using the global best genome.
Future work also includes investigating how to use varying forms of crossover to
improve the repopulation algorithm’s performance, which will include examin-
ing various crossover rules for repopulation, changing genome encoding methods,
and redesigning the distance evaluation function. Lastly, it was particularly in-
teresting that preventing and allowing repeated extinction both provided similar
improvements, but neither outperformed the other. Developing a strategy that
can make use of the best qualities of both may lead to further performance im-
provements. It should also be noted that while this work was examined in the
context of neuroevolution algorithms, it could also be applied to any evolutionary
strategy utilizing islands.
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