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Abstract. This work introduces a novel, nature-inspired neural archi-
tecture search (NAS) algorithm based on ant colony optimization, Con-
tinuous Ant-based Neural Topology Search (CANTS), which utilizes syn-
thetic ants that move over a continuous search space based on the density
and distribution of pheromones, strongly inspired by how ants move in
the real world. The paths taken by the ant agents through the search
space are utilized to construct artificial neural networks (ANNs). This
continuous search space allows CANTS to automate the design of ANNs
of any size, removing a key limitation inherent to many current NAS
algorithms that must operate within structures of a size predetermined
by the user. CANTS employs a distributed asynchronous strategy which
allows it to scale to large-scale high performance computing resources,
works with a variety of recurrent memory cell structures, and uses of a
communal weight sharing strategy to reduce training time. The proposed
procedure is evaluated on three real-world, time series prediction prob-
lems in the field of power systems and compared to two state-of-the-art
algorithms. Results show that CANTS is able to provide improved or
competitive results on all of these problems while also being easier to
use, requiring half the number of user-specified hyper-parameters.

Keywords: Ant Colony Optimization - Artificial Neural Network - Neu-
ral Architecture Search

1 Introduction

Manually optimizing artificial neural network (ANN) structures has been an
obstacle to the advancement of machine learning given that it is significantly
time-consuming and requires a considerable level of domain expertise [1]. ANN
structures are typically chosen based their reputation in existent literature or
based on knowledge shared across the machine learning community. However,
changing even a few problem-specific meta-parameters can lead to poor gener-
alization upon committing to a specific topology [2, 3]. To address these chal-
lenges, a number of neural architecture search (NAS) [1,4-8] and neuroevolution
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(NE) [9, 10] algorithms have been developed to automate the process of ANN
design. More recently, nature-inspired neural architecture search (NI-NAS) al-

gorithms have shown increasing promise, including the Artificial Bee Colony
(ABC) [11], Bat [12], Firefly [13], and Cuckoo Search [14] algorithms.

Ant colony optimization (ACO) [15] is another successful NI-NAS strategy
that has been shown to be particularly powerful when automating the design
of recurrent neural networks (RNNs). Originally, ACO for NAS was limited to
small structures based on Jordan and Elman RNNs [16] or was used as a process
for reducing the number of network inputs [17]. Later work proposed generaliza-
tions of ACO for optimizing the synaptic connections within RNN memory cell
structures [18] and even entire RNN architectures in an algorithmic framework
called Ant-based Neural Topology Search (ANTS) [19]. In the ANTS process,
ants traverse a single massively-connected “superstructure”, searching for opti-
mal RNN sub-networks which connect RNN nodes both in terms of structure,
i.e., all possible feed forward connections, and in time, i.e., all possible recurrent
synapses that span many different time delays. This approach shares similar-
ity to NAS methods in ANN cell and architecture design [5-7,20-24], which
operate within a limited search space, generating cells or architectures with a
pre-determined maximum number of nodes and edges [4].

Most NE methods, instead of operating within fixed bounds, are construc-
tive, continually adding and removing nodes and edges during the evolutionary
process (e.g., NEAT [25], CoDeepNEAT [26] and EXAMM [27]). Other strate-
gies involve generative encoding, such as HyperNEAT [28], where a generative
network is evolved, which can then be used to create architectures and assign
values to their synaptic weights. Nonetheless, these approaches still require man-
ually specifying or constraining the size or scale of the generated architecture in
terms of the number of layers and nodes.

In general, constructive NAS methods often suffer from getting stuck in
(early) local minima or take considerable computation time to evolve struc-
tures that are sufficiently large in order to effectively address the task at hand,
especially for large-scale deep learning problems. Alternately, having to pre-
specify bounds for the space of possible NAS-selected architectures can lead to
poorly performing or suboptimal networks if the bounds are incorrect, requir-
ing many runs of varying bound values. In order to address these challenges,
this work introduces the novel ACO-inspired algorithm, Continuous Ant-based
Neural Topology Search (CANTS), which utilizes a continuous search domain
that flexibly allows for the design of ANNs of any size. Synthetic continuous ant
(cant) agents move through this search space based on the density and distri-
bution of pheromone signals, which emulates how ants swarm in the real world,
and the paths resulting from their exploration are used to construct RNN ar-
chitectures. CANTS is a distributed, asynchronous algorithm, which facilitates
scalable usage of high performance computing (HPC) resources, and also utilizes
communal intelligence to reduce the amount of training required for candidate
evolved networks. The procedure further allows for the selection of recurrent
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nodes from a suite of simple neurons and complex memory cells used in modern
RNNs: A-RNN units [29], GRUs [30], LSTMs [31], MGUs [32], UGRNNs [33].

CANTS is compared to state-of-the-art benchmark algorithms used in de-
signing RNNs for time series data prediction: ANTS [19] and EXAMM [27].
In addition to eliminating the requirement for pre-specified architecture bounds,
CANTS is shown to yield results that improve upon or are competitive to ANTS
and EXAMM while reducing the number of user specified hyperparameters from
16 in both EXAMM and ANTS down to 8 in CANTS. CANTS also provides an
advancement to the field of ant colony optimization as it is the first algorithm
capable of optimizing complex graph structures without requiring a predefined
(super)structure to operate within. While ACO has been applied to continuous
domain problems before [34-38], to the authors’ knowledge, our algorithm is the
first to simulate and apply the movements of ants through a continuous space
to design unbounded graph structures.

2 Methodology

The CANTS procedure (see high-level pseudo-code in Algorithm 1) employs an
asynchronous, distributed “work-stealing” strategy to allow for scalable execu-
tion on HPC systems. The work generation process maintains a population of
the best-found RNN architectures and repeatedly generates candidate RNNs
whenever the worker processes request them. This strategy allows workers to
complete the training of the generated RNNs at whatever speed they are capa-
ble of, yielding an algorithm that is naturally load-balanced. Unlike synchronous
parallel evolutionary strategies, CANTS scales up to any number of available
processors, supporting population sizes that are independent of processor avail-
ability. When the resulting fitness (mean squared error over validation data) of
candidate RNNs is reported to the work generator process, if the candidate RNN
is better than the worst RNN in the population, then the worst RNN is removed
and the candidate is added. Note that the saved pheromone placement points
for the candidate are incremented in the continuous search space.

Candidate RNNs are synthesized using a search space of stacked 2D contin-
uous planes, where each 2D plane represents a particular time step ¢ (see Figure
la). The input nodes for each time step are uniformly distributed at the input
edge of the search space. A synthetic continuous ant agent (or cant) picks one
of the discrete input node positions to start at and then moves through the con-
tinuous space based on the current density and distribution of other pheromone
placements. Cants are allowed to move forward on the level they are on and can
move up to any plane above it. They are restricted from moving down the stack
— while connections moving up the stack represent passing information from a
previous time step to a future time step, the reverse would require passing un-
known future data to a previous time step of the RNN which is not possible.
While ants only move forward on a given plane, they are permitted to move
backward when moving to a plane higher on the stack since many RNNs have
recurrent connections that feed into earlier nodes in the network. This enforced
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Algorithm 1. Continuous Ant-guided Neural Topology Search Algorithm

procedure WorkGenerator
> Construct search space with inputs at y=0 and output at y=1
> Recurrent time steps is the spaces’s z axis
search_space = new SearchSpace
for i < 1...maz_iteration do
NNpew — AntsSwarml()
send_to_worker(nnpew, worker.id)
NNnew, fit < receive_fit_from_worker()
if nn_fitness < worst_population-member then
population.pop(worst_population_member)
population.add(nMnew )
RewardPoints(nnnew)
procedure Worker
receive_from_master(nn)
fitness < train_test_nn(nn)
send_fitness_to_master(nn, fitness)
procedure AntsSwarm
> Ants choose input in discrete fashion
for ant + 1...no-ants do
CreatePath(ant)

> Use DBscan to cluster ants paths points
segments < DBscanPaths(ants)
> Create RNN from segments
TMMnew — Create RN N (segments) return rmnpew
procedure CreatePath(ant)
> Choose input in discrete fashion
ChooselInput(ant)
> Create a path starting from the input
while ant.current_y < 0.99 do
r <— uniform_random(0, pheromone_sum — 1)
ant.current_level < ant.climb
if r > ant.exploration_instinct or search_spaceant.current_level] is not
Empty then
point < CreateNewPoint(ant.search_radius)
ant.path.insert(point)
search_space.insert(point)
else
point < FindCenterO f Mass(ant.current_position, ant.search_radius)
if point not in search_space[ant.level] then
ant_path.insert(point)
> Choose Output in discrete fashion
ChooseOutput(ant)
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procedure ChooseInput(ant)
> Select input probabilistically according to pheromones
pheromone_sum < sum(pheromones.input)
r < uniform_random(0, pheromone_sum — 1)
ant.anput < 0
while r > 0 do:
if r < pheromones.inputlant.input] then
ant.enput < 1
break
else
r < r — pheromones.inputant.input]
ant.input < ant.input 4+ 1
procedure ChooseOutput(ant)
> Select input probabilistically according to pheromones
pheromone_sum + sum(pheromones.output)
r < uniform_random(0, pheromone_sum — 1)
ant.input < 0
while r > 0 do:
if r < pheromones.input[ant.output] then
ant.output < 1
break
else
r < r — pheromones.output[ant.output]
ant.output < ant.output + 1
procedure DBscanPaths(ants)
for ant < 1...num_ants do
for point < 1...ant_path do

segments[ant].insert(PickPoint(point))
return segments

procedure PickPoint(point)
[node, pointscluster] < D Bscane(point, search_space[point.level])
node.out_edges_weights.insert(AvrgW eights(points_cluster))
search_space.insert(node) return node
procedure RewardPoints(rnn)
for each node € rnn.nodes do
search_space[node].pheromone += constant
search_space[node].weight < average.eight(node.weight, search_space[node].weight)
if  search_space[node].pheromone > PHEROMONETHRESHOLD
then
search_space[node].pheromone = PHEROMONE THRESHOLD
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upward and (overall) forward movement ensures that cants continue to progress
towards outputs and do not needlessly circle around in the search space. Fig-
ures 1 shows examples of how cants move from an input edge of the search space
to the output edge, how cants explore new regions in the search space, how cants
exploit previously searched areas via attraction to deposited pheromones, and
how cant paths through the space are translated into a final candidate RNN.

Cant Agent Input Node and Layer Selection: Each level in the search space has
a level-selection pheromone value, p;, where [ is the level. These are initialized
to p; = 2 %[ where the top level for the current time step is [ = 1, the next level
for the first time lag is { = 2 and so on. A cant selects its starting level according
to the probability of starting at level [ as P(l) = Elellpl, where L is the total
number of levels. This scheme encourages cants to start at lower levels of the
stack at the beginning of the search. After selecting a level, the cant selects its
input node in a similar fashion, based on the pheromones for each input node
location on that level. When a candidate RNN is inserted into the population,
the level pheromones for each level, utilized by that RNN, are incremented.

Cant Agent Movement: To balance exploration with exploitation, cants behave
similarly to real-world ants by following communication clues to reach to targets.
When a cant moves, it first decides if it will climb up to a higher (stack) level.
This is done in the same manner as selecting its initial layer, except that it only
selects between its current level and higher ones. After deciding if it will climb
or not, the agent will then decide if it will explore or exploit. Cants randomly
choose to exploit at a percentage equal to an exploitation parameter, .

When a cant decides to exploit and follow pheromone traces, i.e., clues, it will
start sensing the pheromone points around it, given a sensing radius, p. If the
cant is staying on the same level, it will only consider deposited pheromones that
are in front of it (i.e., closer to the output nodes), otherwise, it will consider all
the pheromones that are inside its sensing radius on the level it is moving to. The
cant then calculates the center of mass of the pheromones in this region using
the point in the space it will move to. This point is then saved by the candidate
RNN (as a point to potentially increment pheromone values) if the RNN is later
to be inserted into the RNN population. Since cants consider the center of mass
of the pheromone values, the individual points of pheromone values are not the
effective factor in cant-to-cant communication. Rather, it is the concentration of
the pheromone in a region of the space that more closely aligns with how real
ants move in nature.

When a cant instead decides that it will explore, it instead selects a random
point that lies within the range of their sensing radius to move to. Once a cant
decides if it is climbing or staying in the same level, it will generate an angle
bisector that is either a random number between [0, 1] if the current and next
point are on the same level or [—1,1] if the current and next points are on
different levels. This angle bisector is used to calculate the angle of the next
movement, of the cant: 8 = angle_bisect x PI. The movement angle is then
subsequently used to calculate the next x and y coordinates of the next position
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(e) ()

Fig. 1. Cant path selection and network construction: (a) After an cant picks a
layer to start with and an input node, it decides if it will move to a new random point
(exploration), or follow pheromone traces (exploitation). If the the former, the cant
will randomly pick a forward angle between 0° and 180° and move in that direction
equal to its red sensing radius. (b) When the cant wants to use pheromone traces to
determine its new point, it will first sense the the pheromone traces within its sensing
radius. The example cant did not change its layer, so the cant will only consider the
pheromone traces in front of it and not move backwards. The ant will then calculate
the center of mass of the pheromone traces within its sensing radius and then move to
the center of their mass (gold sphere). (c) When the cant moves to a level above it and
decides that it will use exploitation, it will consider the pheromone traces in its sensing
range in all directions, which lie between the angles 0° and 360°. This way, the cant
can move backwards when jumping from a layer to another, which makes a recurrent
connection that goes back between hidden layers. (d) The cant moves upward to the
higher level. (e) The cant will move to a new point by exploration. (f) After a series
of upward and forward moves by either exploration or exploitation, when the cant has
output nodes within its sensing radius, it will stop the continuous search and select an
output node based on its discrete pheromone values. If there is only one output node,
then the cant will directly connect its last point to the output.
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(e) (h)

Fig. 1. Cant path selection and network construction (continued): (g) Several
cants make their path from an input to an output. (h) The cants’ nodes on each level
are then condensed (clustered) based on their density using DBSCAN.

Fig. 1. Cant path selection and network construction (continued): (i) The cant
picked its input point, starting at level ¢_s, picked a node at t_2 (green edge), picked a
node at t—; (red backward recurrent edge), picked a node at t—1 (green edge), picked a
node at to (magenta forward recurrent edge), picked a node at ¢y (green edge), picked
a node at to (green edge), and finally picked an output node at to (green edge). (j) The
final network is the final result of clustering the nodes and defining the connections
between nodes in the same layer as red edges, and the connection between nodes and
between layers as green forward recurrent edges or blue backward recurrent edges. The
flow moves from the gray inputs at the bottom to the black outputs at the top.
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of the cant: Zyew ¢ Torg + p * c08(0), Ynew < Yoia + p * sin(f). These points are
also saved for potential future pheromone modification.

Condensing Cant Paths to RNN Nodes: After cants choose the points in their
paths from the inputs to the outputs, the points in the search space are clustered
using the DBSCAN algorithm [39] to condense those points to centroids. The
points of the segments of the cants’ paths are then shifted to the centroids that
they belong to in the search space and those new points become the nodes of
the generated RNN architecture (see Figures 1g and 1h). The node types are
picked by a pheromone-based discrete local search, as is done in the discrete
space ANTS. Each of these node types at the selected point will have their own
pheromone values that drive probabilistic selection.

Communal Weight Sharing: In order to avoid having to retrain every newly-
generated RNN from scratch, a communal weight sharing method has been im-
plemented to allow generated RNNs to start with values similar to those of pre-
viously generated and trained RNNs. The centroid points (i.e., the RNN node
points in the continuous space) in CANTS retain the weights of all the out-
going edges from those nodes. Each newly-created centroid is assigned a weight
value which is passed to the edges of the generated RNN. In the case where a
centroid did not have any previously created centroid in its cluster, randomly
initialized weights are assigned to those outgoing edges either uniformly at ran-
dom between —0.5 and 0.5, or via the Kaiming [40] or Xavier [41] strategies.
If there were previously-created centroids in the clustering region, the weight
values assigned to the generated RNN nodes are the average of the weights of
those existing centroids. The weights of a centroid are updated after an RNN
is trained by calculating the averages of the original centroid weight values and
all the weights of the outgoing edges of the corresponding node (after training).
The updated weights can then be used to initialize new centroid weights when
they lie in their cluster when DBSCAN is applied in the following iteration.

Pheromone Volatility: Pheromone decay happens on a regular basis after each
iteration of optimization regardless of the performance of the generated RNN(s).
The pheromones decay by a constant value and after a specific minimum thresh-
old the point is removed from the search space. By letting points vanish, the
search space removes tiny residual pheromones which might provide distraction
to cant-to-cant communication as well as slow down the overall algorithm.

Pheromone Incrementation: For each successful candidate RNN, i.e., each RNN
that performs at least better than the worst in the population, the corresponding
centroids for its RNN nodes in the search space are rewarded by increasing their
pheromone values by a constant value. The values of the pheromones have a
maximum limit to avoid becoming overly attractive points to the cants, which
could result in premature convergence.
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3 Results

This work compares CANTS to the state-of-the-art ANTS and EXAMM algo-
rithms on three real world datasets related to power systems. All three methods
were used to perform time series data prediction for different parameters, which
have been used as benchmarks in prior work. Main flame intensity was used
as the prediction parameter from the coal plant’s burner, net plant heat rate
was used from the coal plant’s boiler, and average power output was used from
the wind turbines. Experiments were also performed to investigate the effect of
CANTS hyper-parameters: the number of cants and cant sensing radii, e.

Computing Environment The results for ANTS, CANTS, and EXAMM were
obtained by scheduling the experiment on Rochester Institute of Technology’s
high performance computing cluster with 64 Intel® Xeon® Gold 6150 CPUs,
each with 36 cores and 375 GB RAM (total 2304 cores and 24 TB of RAM).
Each ANTS experiment utilized 15 nodes (540 cores), taking approximately 30
days to complete all the experiments. CANTS experiments used 5 nodes (180
cores), taking 7 days to finish all the experiments. EXAMM experiments also
used 5 nodes (180 cores) and also took approximately 7 days to complete the
experiments.

Datasets The datasets used, which are derived from coal-fired power plant
and wind turbine data, have been previously made publicly available on the
EXAMM repository to encourage further study in time series data prediction
and reproducibility!. The first dataset comes from measurements collected from
12 burners of a coal-fired power plant as well as its boiler parameters and the
second dataset comes from wind turbine engine data from the years 2013 to 2020,
collected and made available by ENGIE’s La Haute Borne open data windfarm?.
All of the datasets are multivariate and non-seasonal, with 12 (burner), 48
(boiler), and 78 (wind turbine) input variables (potentially dependent). These
time series are very long, with the burner data separated into 7000 time step
chunks — one for training and one for testing (per minute recordings). The boiler
dataset is separated into a training set of 850 steps and test set of 211 steps (per
hour recordings). The wind turbine dataset is separated into a training set of
190,974 steps and test set of 37,514 steps (each step taken every 10 minutes).

3.1 Number of Cant Agents

An experiment was conducted to determine the effect that the number of cant
agents has on the performance of CANTS. The experiment focused on the net
plant heat rate feature from the coal-fired power plant dataset. The number of
ants evaluated were 10, 30, 60, 100, 150, and 210. The results, shown in Figure 2,
show that, as the number of cants are increased, the performance increases until

! https://github.com/travisdesell/exact/tree/master/datasets,/
2 https://opendata-renewables.engie.com
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Fig. 2. CANTS w/ varying # of agents. Fig.3. CANTS w/ different sensing radii.

150 cants are used and then a decline is observed. This shows that the number
of cant agents is an important hyper-parameter and requires tuning, potentially
exhibiting “sweet spots” that, if uncovered, provide strong results.

3.2 Cant Agent Sensing Radius

We next investigated the effect that the sensing radii (range) of the cant agents
had on algorithm performance. Figure 3 shows that a sensing radius of 0.5 ob-
tained better performance compared to the 0.1, 0.2, 0.3, 0.4, and 0.6 sensing
radii values tested. We also evaluated the effect that using a randomly gen-
erated sensing radius per cant agent would have. For these, ¢ was randomly
initialized (uniformly) via ~ U(0.01,0.98). Ultimately, we discovered that the
sensing radius of 0.5 still provided the best results.

3.3 Algorithm Benchmark Comparisons

To compare the three different NAS strategies, each experiment was repeated
10 times (trials) for statistical comparison and all algorithms were set to gener-
ate 2000 RNNs per trial. For CANTS, the sensing radii of the cant agents and
exploration instinct values were generated uniformly via ~ U(0.01,0.98) when
the cants were created, initial pheromone values were 1 and the maximum was
kept at 10 with a pheromone decay rate set to 0.05. For the DBSCAN module,
clustering distance was 0.05 with a minimum point value of 2 — runs with these
settings were done using 30 and 150 ants. CANTS and ANTS used a population
of size 20 while EXAMM used 4 islands, each with a population of 10. ANTS,
CANTS, and EXAMM all had a maximum recurrent depth of 5 and the predic-
tions were made over a forecasting horizon of 1. The generated RNNs were each
allowed 40 epochs of back-propagation for local fine-tuning (since all algorithms
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are mmetic). ANTS and EXAMM utilized the hyper-parameters previously re-
ported to yield best results [19, 27].

The results shown in Figure 4, which compare CANTS, ANTS and EXAMM
in the three experiments described above (over the three datasets), report the
range of mean average error (MAE) of each algorithm’s best-found RNNs. While
EXAMM outperformed CANTS with 30 ants, CANTS with 150 ants had a better
performance than EXAMM and ANTS. CANTS was competitive with ANTS on
the net plant heat rate predictions and outperformed EXAMM on this dataset.
CANTS also outperformed ANTS on the wind energy dataset yet could not
beat EXAMM. Potential reasons for this could be that the complexity/size of
this dataset is greater and that the task is simply more difficult which results in
a potentially larger search space. As CANTS allows for potentially unbounded
network sizes, its search space is significantly larger than either that of ANTS or
EXANM. Though ANTS outperformed CANTS on the wind dataset, CANTS
is still a good competitor, especially since it has less hyper-parameters (8) to
tune compared to both ANTS and EXAMM (both require at least 16). While
all these reasons may be valid, the size of the search space is likely the biggest
challenge. Further evidence of this is provided in Figures 5, 6, 7, present the
number of structural elements (nodes, edges, and recurrent edges, respectively)
of the best-found RNN architectures using the different algorithms. The CANTS
runs with 150 ants resulted in significantly more complex architectures for many
of the problems, which may be an indication that CANTS can evolve better
performing structure if provided more optimization iterations.
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4 Discussion and Future Work

This work introduces continuous ant-based neural topology search (CANTS), a
novel nature-inspired optimization algorithm that utilizes a continuous search
space to conduct unbounded neural architecture search (NAS). This approach
provides a unique strategy to overcome key limitations of constructive neuro-
evolutionary strategies (which often prematurely get stuck at finding smaller,
less performant architectures) as well as other neural architecture search strate-
gies that require users to carefully specify the bounds limiting the neural archi-
tecture size. CANTS was experimentally evaluated for the automated design of
recurrent neural networks (RNNs) to make time series predictions across three
challenging real-world data sets in the power systems domain. We compared it
to two state-of-the-art algorithms, ANTS (a discrete space ant colony NAS al-
gorithm) and EXAMM (a constructive neuro-evolution algorithm). CANTS is
shown to improve on or be competitive with these strategies, while also being
simpler to use and tune, only requiring 8 hyper-parameters as opposed to the 16
hyper-parameters of the other two strategies.

This study presents some initial work generalizing ant colony algorithms to
complex, continuous search spaces, specifically for unbounded graph optimiza-
tion problems (with NAS as a target application), opening up a number of
promising avenues for future work. In particular, while the search space is con-
tinuous in each two-dimensional plane (or time step) of our temporal stack, there
is still the number of discrete levels that a user must specify. Therefore, a promis-
ing extension of the algorithm would be to make the search space continuous
across all three dimensions, removing this parameter, and allowing pheromone
placements to guide the depth of recurrent connections. This could have impli-
cations for discrete-event, continuous-time RNN models [42], which attempt to
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tackle a broader, more complex set of sequence modeling problems. Finally, and
potentially the most interesting, is the fact that the exploitation parameter, e,
and the sensing radius, p, for each synthetic ant agent in our algorithm was held
fixed (or in some cases randomly initialized) for the duration of each CANTS
search. However, the ants could instead be treated as complex agents that evolve
with time, learning the best exploitation and sensing parameters for the task
search spaces they are applied to. This could provide far greater flexibility to
the CANTS framework. Expanding this algorithm to other domains, such as the
automated design of convolutional neural networks (for computer vision) or to
other types of RNNs, such as those used for natural language processing, could
further demonstrate the potentially broad applicability of this nature-inspired
approach.
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