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Image is: "Aco TSP". Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/
wiki/File:Aco_TSP.svg#mediaviewer/File:Aco_TSP.svg

Ant colony optimization is based off the 
behavior of swarming ants.  Ants deposit 
pheromone when they have found a good 
path, and other ants are drawn to those 
pheromones.  Over time the pheromone 
degrades on paths not frequently traveled.  
This makes it a very interesting algorithm 
for determining paths through graphs. "Safari ants" by Mehmet Karatay - Own work. Licensed 

under CC BY-SA 3.0 via Wikimedia Commons - http://
commons.wikimedia.org/wiki/

File:Safari_ants.jpg#mediaviewer/File:Safari_ants.jpg

http://commons.wikimedia.org/wiki/File:Aco_TSP.svg#mediaviewer/File:Aco_TSP.svg


Introduction: Ant Colony Optimization

While ant colony optimization (ACO) has seen wide use on problems 
such as the Traveling Salesman [1], and has even been extended to 
training the weights of neural networks [2-5], it has not yet been used 
to evolve the structure of neural networks.

This is particularly interesting, as designing neural networks is in many 
ways a graph path selection problem, which is what ACO was originally 
designed for.

1. M.Dorigo and L. M. Gambardella. Ant colonies for the traveling salesman problem. Bio Systems, 43(2):73–81, 1997.
2. J.-B. Li and Y.-K. Chung. A novel back-propagation neural network training algorithm designed by an ant colony optimization. In 

Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, pages 1–5. IEEE, 2005. 
3.  C.Blum and K. Socha. Training feed-forward neural networks with ant colony optimization: An application to pattern classification. In 

Hybrid Intelligent Systems, 2005. HIS’05. Fifth International Conference on, pages 6–pp. IEEE, 2005.
4.  A. Pandian. Training neural networks with ant colony optimization. PhD thesis, California State University, Sacramento, 2013. 
5.  M. Unal, M. Onat, and A. Bal. Cellular neural network training by ant colony optimization algorithm. In Signal Processing and 

Communications Applications Conference (SIU), 2010 IEEE 18th, pages 471–474. IEEE, 2010. 
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6. S.F.Crone, M.Hibon,and K.Nikolopoulos. Advances in forecasting with neural networks? Empirical evidence 
from the NN3 competition on time series prediction. International Journal of Forecasting, 27(3):635–660, 2011. 

7. G. P. Zhang. Neural networks for time-series forecasting. In Handbook of Natural Computing, pages 461–477. 
Springer, 2012. 

Recurrent neural networks (B and C) are a variation on neural 
networks which employ "memory" neurons and/or backward links, 
unlike feed forward neural networks which only have forward links (A).

They have been widely used for time series data prediction [6,7].
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Fig. 1. Feed Forward (A), Jordan (B) and Elman (C) networks with a hidden layer and single out-
put node. These networks were trained separately for each of the four possible outputs: airspeed,
altitude, pitch and roll.
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8. Hinton, Geoffrey, Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural 
computation 18.7 (2006): 1527-1554.

9. Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends® in Machine Learning 2.1 
(2009): 1-127.

Unfortunately, RNNs for time series data prediction typically require 
few input nodes (<20), so convolutional neural networks are not 
applicable.

Further, the recurrent links and memory neurons provide significant 
training challenges, so pre-training strategies based on Restricted 
Boltzmann Machines [8] and auto-encoders [9] are also not applicable.



Introduction: Recurrent Neural Networks

Image from: http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/

Further than this, it is even challenging to get  backpropagation working 
to train a recurrent neural network. In order to do backpropagation, the 
neural network needs to be "unrolled" for every time step, leading to a 
massive neural network with shared weights:

http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/


Introduction: Recurrent Neural Networks

10. Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “Understanding the exploding gradient problem,” Tech. 
Rep., Universite ́ De Montre ́al, 2012, arXiv:arXiv:1211.5063.

11. Graves, Alex, et al. "A novel connectionist system for unconstrained handwriting recognition." Pattern Analysis 
and Machine Intelligence, IEEE Transactions on 31.5 (2009): 855-868.

12. Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. "Advances in optimizing recurrent 
networks." Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 
2013.

These large neural networks become very challenging to train with 
backpropagation, leading to problems of exploding and vanishing gradients. 
There has been recent work in developing techniques to overcome this 
using clipped gradients [10], long short term memory (LSTM) neurons 
[11] and other gradient-free methods [12].

As such, evolutionary optimization strategies for continuous parameters 
such as Particle Swarm Optimization (PSO) and Differential Evolution 
(DE) also show much promise in training RNNs, as they do not require 
unrolling or the calculation of gradients.
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Introduction: Neuro-Evolution

While there are some standard architectures for recurrent neural 
networks (such as the previously shown Jordan and Elman RNNs), it is 
still an open question as to what design of an RNN will provide the best 
predictions.

Neuro-Evolution [13-14] is the process of evolving the structure of 
neural networks as opposed to using fixed neural network architectures.  
There have been successful strategies for this, such as NeuroEvolution 
of Augmenting Topologies (NEAT) [15] and HyperNEAT [16], however 
while these can evolve backward links, they cannot evolve "memory" 
neurons as used in time series data prediction without some 
modification.

13. Annunziato, M., M. Lucchetti, and S. Pizzuti. "Adaptive Systems and Evolutionary Neural Networks: a Survey." Proc. EUNITE02, 
Albufeira, Portugal (2002).

14. Floreano, Dario, Peter Dürr, and Claudio Mattiussi. "Neuroevolution: from architectures to learning." Evolutionary Intelligence 1.1 
(2008): 47-62.

15. K. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary computation, 10(2):99–127, 
2002.

16. K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based encoding for evolving large-scale neural networks. Artificial life, 
15(2):185–212, 2009. 
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Motivation: Flight Data Prediction

General aviation comprises 63% of all civil aviation activity in the United 
States; covering operation of all non-scheduled and non-military aircraft 
[17,18]. 

While general aviation is a valuable and lucrative industry, it has the 
highest accident rates within civil aviation [19].

For many years, the general aviation accident and fatality rates have 
hovered around 7 and 1.3 per 100,000 flight hours, respectively [20].

17. B. Elias. Securing general aviation. DIANE Publishing, 2009.
18. K. I. Shetty. Current and historical trends in general aviation in the United States. PhD thesis, Massachusetts Institute of Technology 

Cambridge, MA 02139 USA, 2012. 
19. National Transportation Safety Board (NTSB), 2012.  https://www.ntsb.gov/safety/mwl5_2012.html
20. Aircraft Owners and Pilots Association(AOPA), January 2014. http://www.aopa.org/About-AOPA/Statistical-Reference-Guide/

General-Aviation-Safety-Record-Current-and-Historic.aspx

http://www.aopa.org/About-AOPA/Statistical-Reference-Guide/General-Aviation-Safety-Record-Current-and-Historic.aspx


Motivation: Flight Data Prediction

State of the art in aviation is in many ways primitive when it comes to 
accident prevention.  In many cases it is reactionary -- after an accident 
occurs an investigation is performed and depending on the results of the 
investigation, new regulations are proposed to prevent further incidents 
of a similar nature.
Likewise, current state of the art in flight data analysis deals with 
exceedences, i.e., "did altitude exceed a threshold?"  If this happens, then 
the flight will potentially be reviewed.



Motivation: Flight Data Prediction

Having the ability to predict flight parameters based on multiple other 
parameters as input is a first step towards developing sensors which can 
intelligently detect anomalous behavior or predict accident precursor 
behavior.  Bringing machine learning strategies into flight data analysis 
and accident prediction has great potential for preventing future 
accidents in a proactive manner.

Further, these same strategies can be used to predict and prevent 
hardware failures or suggest pre-emptive maintenance, reducing costs 
for airlines.



Motivation:
The National General Aviation 

Flight Database



Motivation: The National General Aviation Flight Database

The National General Aviation Flight Information Database (NGAFID) 
has been developed at the University of North Dakota as a central 
repository for general aviation flight data. It consists of per-second flight 
data recorder (FDR) data from three fleets of aircraft.
As of November 2014, the database stores FDR readings from over 
200,000 flights, with more being added daily. It currently stores over 750 
million per-second records of flight data. The NGAFID provides an 
invaluable source of information about general aviation flights, as most of 
these flights are from aviation students, where there is a wider variance 
in flight parameters than what may normally be expected within data 
from professionally piloted flights. 



Motivation: The National General Aviation Flight Database

Time series flight data for this work were obtained from the NGAFID, 
and they have been made publicly available as a data release:

http://people.cs.und.edu/~tdesell/ngafid_releases.php

http://people.cs.und.edu/~tdesell/ngafid_releases.php
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Previous Results
We trained 15 different recurrent neural network designs (variations on 
the feed forward, Jordan and Elman RNNs below) for four different 
output parameters for five different flights.  Training for all 4 output 
parameters concurrently was shown to not be feasible, and 
asynchronous differential evolution outperformed backpropagation.  In 
total, 12,000 high performance computing runs of differential evolution 
with various parameters were performed.
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Fig. 1. Feed Forward (A), Jordan (B) and Elman (C) networks with a hidden layer and single out-
put node. These networks were trained separately for each of the four possible outputs: airspeed,
altitude, pitch and roll.
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21. T. Desell, S. Clachar, J. Higgins, and B. Wild. Evolving neural network weights for time-series prediction of general aviation flight 
data. In T. Bartz-Beielstein, J. Branke, B. Filipi, and J. Smith, editors, Parallel Problem Solving from Nature PPSN XIII, volume 8672 
of Lecture Notes in Computer Science, pages 771–781. Springer International Publishing, 2014.
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Methodology

Ants select a random path through the possible RNN nodes based on the 
number of pheromones on each link.  Ants are allowed to only visit one 
recurrent node per layer.



Methodology

The multiple ant paths are combined into a single recurrent neural network.



Methodology

RNNs can be trained by any training method (backprop, particle swarm, 
differential evolution, etc.) A population of the best found RNNs is kept.  
When a new best RNN is found, pheromones are incremented along all 
edges of that RNN.

After each evaluation of an RNN, all weights are degraded by a small 
pheromone degradation weight (1%, 5% and 10% were tested).

RNNs can be evaluated asynchronously on distributed compute nodes, 
with a single master process handling the generation of new RNNs, 
pheromone increments/decrements, and the population of best found 
RNNs.



Results



Results: Optimization Software

The numerical optimization strategies and ant colony optimization 
algorithm have been implemented as part of the Toolkit for 
Asynchronous Optimization (TAO) which is freely available on github:

https://github.com/travisdesell/tao 

TAO is implemented in C++ and MPI for efficiency and easy use on 
clusters and supercomputers, as well as for volunteer computing 
systems such as BOINC.



Results: Experiments

As prior results [21] have shown that backpropagation does not 
perform well, this work focused on using particle swarm optimization 
(PSO) to train the evolved neural networks. Tests with differential 
evolution found both strategies to perform similarly.

PSO was used with a population of 200, an inertia weight of 0.75, and 
local and global best constants of 1.5 for all runs.  It was run for 250, 
500 and 1000 iterations for the different ACO runs.

21. T. Desell, S. Clachar, J. Higgins, and B. Wild. Evolving neural network weights for time-series prediction of general aviation flight 
data. In T. Bartz-Beielstein, J. Branke, B. Filipi, and J. Smith, editors, Parallel Problem Solving from Nature PPSN XIII, volume 8672 
of Lecture Notes in Computer Science, pages 771–781. Springer International Publishing, 2014.



Results: Experiments

The ACO strategy was used to train neural networks with 3, 4 and 5 
hidden layers (with a recurrent node for each hidden node), using 4 and 
8 hidden nodes per layer.
Pheromone degradation rates were 10%, 5% and 1%, with a minimum 
pheromone value of 1, and a maximum pheromone value of 20.
The number of ants used was twice the number of hidden nodes per 
layer (so 8 and 16).
The population size for the ACO strategy was 20.



Results: Experiments

Each run was done allocating 64 processors across 8 compute nodes, 
and was allowed to train for 1000 evaluations of generated recurrent 
neural networks.

Runs were done with PSO performing 250 iterations (50,000 objective 
functions) took ~30 minutes, 500 iterations (100,000 objective 
functions) took ~1 hour, and 1000 iterations (200,000 objective 
functions) took ~2 hours. Previous results allowed up to 15,000,000 
objective function evaluations.

All runs were done on flight ID 13588 from the public data release.  All 
four input parameters (altitude, airspeed, pitch and roll) were used to 
predict one of those four output parameters.  Runs were done 
generating neural networks for each output parameter separately, as 
predicting all four with the same network performed poorly in previous 
work.



Results: ACO Parameter Setting Analysis

The following figures show the ranges of the best fitnesses found by the 
ACO evolution given the different meta-parameters used.



Results: ACO Parameter Setting Analysis

The following figures show the ranges of the best fitnesses found by the 
ACO evolution given the different meta-parameters used.



Results: ACO Parameter Setting Analysis

In general, there was a strong correlation between increased PSO 
iterations and the best fitnesses found.

Across all runs, 4 nodes per layer performed the best, and apart from 
altitude, 5 hidden layers performed the best.

There did not appear to be a strong trend for the pheromone 
degradation rate. 



Results: Best Found Neural Networks

The following shows the best neural network for predicting airspeed as 
evolved by the ACO strategy.

pitch

roll

airspeed

altitude airspeed



Results: Best Found Neural Networks

The following shows the best neural network for predicting altitude as 
evolved by the ACO strategy.
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Results: Best Found Neural Networks

The following shows the best neural network for predicting pitch as 
evolved by the ACO strategy.
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Results: Best Found Neural Networks

The following shows the best neural network for predicting roll as 
evolved by the ACO strategy.
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Results: Predictions

Predictions of the best RNN evolved and trained on flight 13588 used 
to predict flight 17269 for airspeed.



Predictions of the best RNN evolved and trained on flight 13588 used 
to predict flight 17269 for altitude.

Results: Predictions



Predictions of the best RNN evolved and trained on flight 13588 used 
to predict flight 17269 for pitch.

Results: Predictions



Predictions of the best RNN evolved and trained on flight 13588 used 
to predict flight 17269 for pitch.

Results: Predictions



Results: Comparison to Prior Results

These neural networks were 
compared to a random 
noise estimator (ti+1 = ti), 
best results from our 
previous publication, and 
were also run on four other 
flights, IDs 15438, 17269, 
175755 and 24335.

from the corresponding input node to the output node having weights of 1. Because of
this, it also provides a good test of the correctness of the global optimization techniques,
at the very least they should be able to train a network as effective as a RNE; however
local optimization techniques (such as backpropagation) may not reach this if the search
area is non-convex and the initial starting point does not lead to a good minimum.

Airspeed
Method 13588 15438 17269 175755 24335
ti+1 = ti 0.00512158 0.00316859 0.00675531 0.00508229 0.00575537
Prior Best 0.00472131 0.00250284 0.00656991 0.00465581 0.00495454
Best ACO 0.00279963 0.00145748 0.00433578 0.0028908 0.00305361

Altitude
Method 13588 15438 17269 175755 24335
ti+1 = ti 0.00138854 0.00107117 0.00200011 0.00137109 0.00192345
Prior Best 0.000367535 0.000305193 0.000895711 0.000399587 0.000485329
Best ACO 0.0002183 0.000160932 0.000353502 0.000224827 0.000249197

Pitch
Method 13588 15438 17269 175755 24335
ti+1 = ti 0.0153181 0.010955 0.0148046 0.0161251 0.0173269
Prior Best 0.014918 0.0100763 0.0147712 0.01514 0.0160249
Best ACO 0.00606664 0.00498241 0.00837594 0.005864 0.00733882

Roll
Method 13588 15438 17269 175755 24335
ti+1 = ti 0.0158853 0.00604479 0.0204441 0.012877 0.0192648
Prior Best 0.0154541 0.00587058 0.0206536 0.0127999 0.0182611
Best ACO 0.0155934 0.00900393 0.0237235 0.0151416 0.0200261

Fig. 6. Comparison of the best found ACO evolved neural networks to the random noise estimator
(ti+1 = ti) and the previously published best found results. The mean average error for the neural
networks trained on flight ID 13588 is given when they are tested on four other flights.

Figure 6 compares the best ACO results to the RNE and the previous best trained
neural network for flight ID 13588. Results are the Mean Average Error (MAE) of the
prediction to the actual value. As results were normalized over a range of 1, the MAE
is also the percentage error. These neural networks and the RNE were also run on four
other flights, IDs 15438, 17269, 175755 and 24335 from the NGAFID data release. On
average compared to previous best results, the ACO evolved neural networks provided
a 63% improvement over airspeed, a 97% improvement over altitude and a 120% im-
provement over pitch, without requiring additional input neurons for lag values. Given
the fact that these neural networks also performed strongly on all test flights, these re-
sults are quite encouraging.

However, as in previous work, the roll parameter remains quite difficult to predict,
and the ACO evolved neural networks actually resulted in a 14.5% decrease in predic-
tion accuracy, performing worse than the RNE. Given the depth and complexity of the
evolved neural networks, there is justifiable concern for over training, which may be

On average compared to previous best results, the ACO evolved neural 
networks provided a 63% improvement over airspeed, a 97% improvement 
over altitude and a 120% improvement over pitch, without requiring 
additional input neurons from previous timesteps (which the previous 
strategy allowed).   Roll however, did not improve (maybe needed to train the 
RNNs longer).



Conclusions & Future Work



Conclusions

Ant colony optimization can be used for neuro-evolution.  Our strategy 
is easily parallelizable and can use any neural network training algorithm.

Evolutionary algorithms can be well applied to training deep recurrent 
neural networks.

Data used in this work has been made available as the first data release 
from the NGAFID for other researchers to compare (and hopefully 
beat!) our results.



Future Work

Compare ACO to modified NEAT/Hyper-NEAT.

Investigate different strategies for incrementing/decrementing 
pheromones.

Can we apply ACO to evolving large scale NNs for computer vision 
tasks? Can they also select different neuron types (ReLU units, max 
pooling units, etc).

Can we go deeper in terms of recurrency? What if memory neurons had 
their own memory neurons, and so on.  Can we also utilize LSTM 
memory neurons?



Questions?

tdesell@cs.und.edu

http://people.cs.und.edu/~tdesell
https://github.com/travisdesell/tao

http://people.cs.und.edu/~tdesell/ngafid_releases.php

mailto:tdesell@cs.und.edu
http://people.cs.und.edu/~tdesell
https://github.com/travisdesell/tao
http://people.cs.und.edu/~tdesell/ngafid_releases.php

