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Motivation: General Aviation Safety

General aviation comprises 63% of all civil aviation activity in the 
United States; covering operation of all non-scheduled and non-
military aircraft [2, 4].  

While general aviation is a valuable and lucrative industry, it has the 
highest accident rates within civil aviation [3]. 

For many years, the general aviation accident and fatality rates have 
hovered around 7 and 1.3 per 100,000 flight hours, respectively [1].
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Motivation: The National General 
Aviation Flight Database
The National General Aviation Flight Information Database 
(NGAFID) has been developed at the University of North Dakota 
as a central repository for general aviation flight data. It 
consists of per-second flight data recorder (FDR) data from 
three fleets of aircraft. 
As of June 2016, the database stores FDR readings from over 
300,00 flights, consisting of over 550,000 flight hours with more 
being added daily. It currently stores over 1.2 billion per-second 
records of flight data (~2TB). The NGAFID provides an 
invaluable source of information about general aviation flights, 
as most of these flights are from aviation students, where there 
is a wider variance in flight parameters than what may normally 
be expected within data from professionally piloted flights. 



Motivation: The National General 
Aviation Flight Database

Time series flight data for this work was 
gathered from the NGAFID, and this has 
been made available publicly for other 
interested researchers: 

http://people.cs.und.edu/~tdesell/
ngafid_releases.php

http://people.cs.und.edu/~tdesell/ngafid_releases.php
http://people.cs.und.edu/~tdesell/ngafid_releases.php


Motivation: Flight Data Prediction

Having the ability to predict flight parameters based on 
multiple other parameters as input is a first step towards 
developing sensors which can intelligently detect 
anomalous behavior or predict accident precursor 
behavior.  Bringing machine learning strategies into flight 
data analysis and accident prediction has great potential 
for preventing future accidents in a proactive manner. 

Further, these same strategies can be used to predict and 
prevent hardware failures or suggest pre-emptive 
maintenance, reducing costs for airlines.



Motivation: Flight Data Prediction

Various parameters contribute to engine vibration: 
•engine design 
•size 
•service life span 
•aircraft type 
•placement 
•weather 
•pilot action 
•etc.



Motivation: Flight Data Prediction

Much work has been done to generate 
physical models to predict vibration, 
however these are tied to all these 
parameters which may not be readily 
available. 

The goal is to create a system which can 
generically predict vibration using FDR 
data.



Long-Short-Term-Memory Recurrent 
Neural Networks

"Learning to store information over 
extended period of time intervals via 
recurrent backpropagation takes a very 
long time, mostly due to insufficient, 
decaying error back flow." 
- S. Hochrieter & J. Schmidhuber [5]

5. Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.



Long-Short-Term-Memory Recurrent 
Neural Networks

Typical flight data involves between 10-100s 
of flight parameters gathered potentially 
multiple times per second and potentially 
asynchronously.  An average flight in the 
NGAFID with 1 hz sampling has ~5800 per 
second records.  

LSTM RNNs provide a solution to training what 
would otherwise be extremely deep RNNs.



LSTM Cell Design
The following gates control flow through a 
LSTM neuron: 

1. the input gate, which controls how much 
information will flow from the inputs of 
the cell 

2. the forget gate, which controls how much 
information will flow from the cell- 
memory 

3. the output gate, which controls how much 
information will flow out of the cell. 

This design allows the network to learn not 
only about the target values, but also about 
how to tune its controls to reach the target 
values 



LSTM RNN Architectures

LSTM neurons were arranged into three 
different architectures and trained to predict 
the vibration paramter 5, 10 and 20 seconds 
into the future.



First Layer(s) LSTM Cells (M1)



Second Layer LSTM Cells (M2)



Architecture I - 21,170 weights



Architecture II - 21,160 weights



Architecture III - 83,290 weights



Implementation

Python's Theano Library was used to 
implement the neural networks. 

Main benefits included Theano's ability to 
compute error gradients (as opposed to 
manually deriving these) and an efficient 
implementation.



Experimental Data

1.Altitude 
2.Angle of Attack 
3.Bleed Pressure 
4.Turbine Inlet Temperature 
5.Mach Number 
6.Primary Rotor/Shaft Rotation 

Speed 
7.Secondary Rotor/Shaft Rotation 

Speed 
8.Engine Oil Pressure 

9. Engine Oil Quantity 
10.Engine Oil Temperature 
11.Aircraft Roll 
12.Total Air Temperature 
13.Wind Direction 
14.Wind Speed 
15.Engine Vibration 

The following parameters were used as inputs 
to the RNNs (normalized between 0 and 1):



Training and Testing Data

Training set: 
28 flights 
41,431 seconds of data 

Testing set: 
57 flights 
38,126 seconds of data



Activation Function

Sigmoid function performed significantly 
better than ArcTan, which resulted in 
distorted results.



Training Metrics

Both mean squared error (MSE, top) and mean 
absolute error (MAE, bottom) were used to evaluate 
the RNNs. 

MSE was used for training as it provided a smoother 
search space than MAE.

TABLE III
TRAINING RESULTS

Error at Error at Error at

5 seconds 10 seconds 20 seconds

Architecture I 0.000398 0.000972 0.001843
Architecture II 0.001516 0.001962 0.002870
Architecture III 0.000409 0.000979 0.001717

at the time step.

VI. IMPLEMENTATION

A. Programming Langauge

Python’s Theano Library [9] was used to implement the
neural networks. It has four major advantages: i) it will
compile the most, if not all, of functions coded using it to
C and CUDA giving fast performance, ii) it will perform the
weights updates for back propagation with minimal overhead,
iii) Theano can compute the gradients of the error (cost
function output) with respect to the weights saving significant
effort and time needed to manually derive the gradients, coding
and debugging them, and finally, iv) it can utilize GPU’s for
further increased performance.

B. Data Processing

The flight data parameters used were normalized between
0 and 1. The sigmoid function is used as an activation
function over all the gates and inputs/outputs. The ArcTan
activation function was tested on the data, however it gave
distorted results and sigmoid function provided significantly
better performance.

C. Machine Specifications

Each of the examined architectures runs on a hyperthreaded
3.5 GHz core and is considered capable of real-time process-
ing. Results were collected using a Mac Pro with 12 logical
cores, with each different architecture being trained for 575
epochs. Run times for training are shown in Table IV. Some
unexpected variance might be realized in these run-times, due
to CPU interruptions which may have occurred over the course
of the experiments. In general, the first two architectures took
similar amounts of time (approximately 8.5-9 hours) for each
time prediction (5, 10 and 20 seconds), and the third took a
bit more than twice as long, at approximately 20 hours for
each time prediction.

VII. RESULTS

The neural networks were run against flights that suffered
from the excessive vibration in a training phase. They were
then run against different set of flights, which also suffered
from the same problem, in a testing phase. There were 28
flights in the training set, with a total of 41,431 seconds of
data. There were 57 flights in the testing set, with a total of
38,126 seconds of data. The networks were allowed to train
for 575 epochs to learn and for the cost function output curve
to flaten.

TABLE IV
RUN TIME (HOURS)

05 10 20

Architecture I 9 8.98 8.85
Architecture II 8.44 8.41 8.4
Architecture III 21.6 19.7 18.5

Fig. 7. Cost function plot for ART III predicting vibration in 10 future sec

A. Cost Function

Mean squared error was used to train the neural networks
as it provides a smoother optimization surface for backprop-
agation. A sample of the cost function output can be seen in
Figure 7. The Figure is a logarithmic plot for architecture III,
for predicting vibrations 10 seconds in the future.

B. Architecture Results

Mean Squared Error (MSE) (shown in Equation 7) was used
as an error measure to train the three architectures, which
resulted in values shown in Table V. Mean Absolute Error
(MAE) (shown in Equation 8) is used as a final measure
of accuracy for the three architectures, with results shown in
Table VI. As the parameters were normalized between 0 and
1, the MAE is also the percentage error.

Error =
0.5⇥

P
(Actual V ib� Predicted V ib)2

Testing Seconds

(7)

Error =

P
[ABS(Actual V ib� Predicted V ib)]

Testing Seconds

(8)

Figures 9, Figures 10, and Figures 11 present the predictions
for all the test flights condensed on the same plot. Time shown
on the x-axis is the total time for all the test flights. Each
flight ends when the vibration reaches the max critical value
(normalized to 1) and then the next flight in the test set beings.
Figure 8 provides an uncompressed example of Architecture



RNN Training

The RNNs were trained for 575 epochs on a 
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resulted in values shown in Table V. Mean Absolute Error
(MAE) (shown in Equation 8) is used as a final measure
of accuracy for the three architectures, with results shown in
Table VI. As the parameters were normalized between 0 and
1, the MAE is also the percentage error.

Error =
0.5⇥

P
(Actual V ib� Predicted V ib)2

Testing Seconds

(7)

Error =

P
[ABS(Actual V ib� Predicted V ib)]

Testing Seconds

(8)

Figures 9, Figures 10, and Figures 11 present the predictions
for all the test flights condensed on the same plot. Time shown
on the x-axis is the total time for all the test flights. Each
flight ends when the vibration reaches the max critical value
(normalized to 1) and then the next flight in the test set beings.
Figure 8 provides an uncompressed example of Architecture



Training Results (MSE)



Testing Results (MSE and MAE)

Mean Squared Error

Mean Absolute Error



Architecture I Predictions

5s

10s

20s



Testing Results: Architecture I predicting 5, 10, 20 sec 



Testing Results: Architecture II predicting 5, 10, 20 sec 



Testing Results: Architecture III predicting 5, 10, 20 sec 



Conclusions

Architecture I provided the best predictions: 
3.3% MAE for 5 seconds 
5.51% MAE for 10 seconds 
10.19% error for 20 seconds 

Architecture III could potentially be trained longer. 

RNNs did not train well on GPUs - needs future 
examination.



QUESTIONS?


