
Travis Desell (tjdvse@rit.edu)
Associate Professor

Department of Software Engineering

Co-Authors:
AbdElRahman ElSaid (PhD GRA)

Alex Ororbia (Assistant Professor, RIT Computer Science)

Collaborators:
Steven Benson, Shuchita Patwardhan, David Stadem (Microbeam Technologies, Inc.)

James Higgins, Mark Dusenbury, Brandon Wild (University of North Dakota)

Investigating Recurrent Neural Network
Memory Structures using Neuro-Evolution

mailto:tjdvse@rit.edu

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Overview
• What is Neuro-Evolution?

• Background:

• Recurrent Neural

Networks for Time
Series Prediction

• Recurrent Memory
Cells

• EXAMM:

• NEAT Innovations

• Edge and Node

Mutations

• Crossover

• Distributed Neuro-
Evolution

• Results

• Future Work

• Discussion

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Motivation

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Neuro-Evolution

• Applying evolutionary strategies to artificial neural
networks (ANNs):

• EAs to train ANNs (weight selection)
• EAs to design ANNs (what architecture is best?)
• Hyperparameter optimization (what parameters do we

use for our backpropagation algorithm)

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Neuro-Evolution for Recurrent Neural Networks

• Most people use human-designed ANNs, selecting from a
few architectures that have done well in the literature.

• No guarantees these are most optimal (e.g., in size,
predictive ability, generalizability, robustness, etc).

• Recurrent edges can go back farther in time than the
previous time step -- dramatically increases the search
space for RNN architectures.

• With so many memory cell structures and architectures to
choose from, which are best? What cells and
architectures perform best, does this change across data
sets and why?

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Neuro-Evolution

• Applying evolutionary strategies to artificial neural
networks (ANNs):

• EAs to train ANNs (weight selection)

• EAs to design ANNs (what architecture is best?)

• Hyperparameter optimization (what parameters do we

use for our backpropagation algorithm)

• Using NE to better understand and guide ML: what
structures and architectures are evolutionarily
selected and why?

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Background

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Recurrent Neural Networks

Recurrent Neural Networks can be extremely
challenging to train due to the exploding/
vanishing gradients problem. In short, when
training a RNN over a time series (via
backpropagation through time), it needs to
be completely unrolled over the time series.

For the simple example above (blue arrows
are forward connections, red are recurrent),
backpropagating the error from time 3
reaches all the way back to input at time 0
(right). Even with this extremely simple RNN,
we end up having an extremely deep
network to train.

Input
time 0

Hidden
Node 1

Hidden
Node 2

Output
time 0

Input
time 1

Hidden
Node 1

Hidden
Node 2

Output
time 1

Input
time 2

Hidden
Node 1

Hidden
Node 2

Output
time 2

Input
time 3

Hidden
Node 1

Hidden
Node 2

Output
time 3

Input Hidden
Node 1

Hidden
Node 2 Output

...

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Recurrent Neural Networks

Traditionally, RNN connections go
back a single time step and to the
same or a previous node in the
network.

This is not a requirement - they can
go back multiple time steps (green)
or forward in the network (orange).
However it is not as well studied due
to additional complexity and
dramatically increasing the
architectural search space.

Input
time 0

Hidden
Node 1

Hidden
Node 2

Output
time 0

Input
time 1

Hidden
Node 1

Hidden
Node 2

Output
time 1

Input
time 2

Hidden
Node 1

Hidden
Node 2

Output
time 2

Input
time 3

Hidden
Node 1

Hidden
Node 2

Output
time 3

Input Hidden
Node 1

Hidden
Node 2 Output

...

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Classification vs. Time Series Data Prediction
RNNs are perhaps more commonly used for classification (and have
been mixed with CNNs for image identification). This involves outputs
being fed through a softmax layer which results in probabilities for the
input being a particular class. The error minimized is for the output
being an incorrect class:

RNNs can also be used for time series data prediction, however in this
case the RNN is predicting an exact value of a time series, some
number of time steps in the future. The error being minimized is
typically the mean squared error (1) or mean absolute error (2). This is
an important distinction.

Using ACO to Optimize LSTM Recurrent Neural Networks GECCO ’18, July 15–19, 2018, Kyoto, Japan

t-9 t-1 t

Current input
Input lag
Actual vibration
Hidden layer

t+10

Figure 4: Nonlinear Output Error inputs neural network.
This networkwas updated to utilize 10 seconds of input data.

t-9 t-1 t

Current input
Input lag
Prediction
Hidden layer

t+9t+1t t+10

Figure 5: Nonlinear AutoRegressive with eXogenous inputs
neural network. This network was updated to utilize 10 sec-
onds of input data, along with the previous 10 predicted out-
put values.

t-9 t-1 t

Current input
Input lag
Prediction
Hidden layer

t+9

Error
Actual vibration

t+1t t+10

Figure 6: Nonlinear Box-Jenkins inputs neural network.
This networkwas updated to utilize 10 seconds of input data,
along with the future output and error values. Due to requir-
ing future knowledge, it is not possible to utilize this net-
work in an online fashion.

indicative of a case of vanishing gradients. Accordingly, the study
allowed for the recurrent weights to be considered in the gradient
calculations in order to update the weights with respect to the cost
function output.

5.2.3 Nonlinear Box-Jenkins (NBJ) Inputs Neural Network: The
structure of the NBJ is depicted in Figure 6. As previously noted,
this network is not feasible for prediction past one time step in
the future in an online manner, as it requires the actual prediction
value and error between it and the predicted value to be fed back
into the network. However, as this work delt with o�ine data, the
actual future vibration values, error, and the output were all fed to
the network along with the current instance parameters and lag
inputs. As in the other networks, the values for the previous 10
time steps were also utilized.

Table 1: K-Fold Cross Validation Results

Prediction Errors (MAE)
LSTM NOE NARX NBJ ACO

Subsample 1 8.34% 10.6% 8.13% 8.40% 7.80%
Subsample 2 4.05% 6.96% 6.08% 7.34% 3.70%
Subsample 3 6.76% 16.8% 11.2% 13.6% 3.49%

Mean 0.0638 0.1145 0.0847 0.0977 0.0501
Std. Dev. 0.0217 0.0497 0.0258 0.0333 0.0245
5.3 Error Function
For all the networks studied in this work, Mean Squared Error (MSE)
(shown in Equation 1) was used as an error measure for training,
as it provides a smoother optimization surface for backpropagation
than mean average error. Mean Absolute Error (MAE) (shown in
Equation 2) was used as a �nal measure of accuracy for the three
architectures, as because the parameters were normalized between
0 and 1, the MAE is also the percentage error.

Error =
0.5 ⇥Õ(Actual V ib � Predicted Vib)2

Testin� Seconds
(1)

Error =

Õ[ABS(Actual V ib � Predicted Vib)]
Testin� Seconds

(2)

5.4 Machine Speci�cations
Python’s Theano Library [23] was used to implement the neural
networks and MPI for Python [3] and was used to run the ACO op-
timization on a high performance computing cluster. The cluster’s
operating system was Red Hat Enterprise Linux (RHEL) 7.2, and
had 31 nodes, each with 8 cores (248 cores in total) and 64GBs RAM
(1948 GB in total). The interconnect was 10 gigabit (GB) In�niBand.

6 RESULTS
The ACO algorithm was run for 1000 iterations using 200 ants. The
networks were allowed to train for 575 epochs to learn and for
the error curve to �atten. The minimum value for the pheromones
were 1 and the maximum was 20. The population size was equal to
number number of iterations in the ACO process, i.e., the population
size was also 1000. Each run took approximately 4 days.

A dataset of 57 �ights was divided into 3 subsamples, each con-
sisting of 19 �ights. The subsamples were used to cross validate the
results by examining combations utilizing two of the subsamples
as the training data set and the third as the testing set. Subsamples
1, 2 and 3 consisted of 23,371, 31,207 and 25,011 seconds of �ight
data, respectively.

These subsamples were used to train the NOE, NARX, NBH, base
architecture and the ACO optimized architecture. Figures 7 shows
predictions for the di�erent models over a selection of test �ights,
and Figure 8 shows predictions an single uncompressed (higher
resolution) test �ight. Table 1 compares these models to the base
architecture (LSTM) and the ACO optimized architecture (ACO).

6.1 NOE, NARX, and NBJ Results
Somewhat expectedly, the NOE model performed the worst with
with a mean error of 11.45% (� = 0.0497). The NBJ model performed
better than the NOE model with a mean error of 9.77% (� = 0.0333),

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Memory Cell Structures - Simple Neuron
• "Simple" neurons are the

basic neural network
building block. Inputs are
summed, and activation
function is applied and the
output is feed forward to
other neurons.

• Simple (and any other
memory cell structure) can
also have recurrent edges (in
red) added through the
evolutionary process. These
can loop back to the same
neuron (e.g., an Elman-like
connection) or to any other
neuron in the network
(shallower, same layer or
deeper).

Input
(sum)

Output

Activation
Function

(tanh,
sigmoid, ...)

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Memory Cell Structures - LSTM

Long Short-Term Memory (LSTM) are perhaps the
most well known RNN memory cell, first proposed in
1997 by Hochreiter and Schmidhuber.

This work uses the more modern version of LSTM,
with peephole connections as well as omitting the
output function (identity instead of tanh) [3]. This
cellular structure, while conceptually appealing, is
computationally complex with 11 trainable
parameters (blue diamonds).

[1] Felix A. Gers; Jürgen Schmidhuber; Fred Cummins (2000). Learning to Forget: Continual
Prediction with LSTM. Neural Computation. 12 (10): 2451–2471.

prev cell

** *

*

input

** **

W_inputW_cellW_output W_forgetU_inputU_output U_forget

B_input

+

B_cell

+

B_output

+

B_forget

+

σ

input gate

*

σ

output gate

*

σ

forget gate

+

tanh

cell

identity

output

f = σ(W_f*x + U_f*c_prev * f_bias)
i = σ(W_i*x + U_i*c_prev * i_bias)

o = σ(W_o*x + U_o*c_prev * o_bias)
c = f * c_prev + i * tanh(W_c*x + c_bias)

h = o * c

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Memory Cell Structures - GRU

Gated recurrent units (GRUs)
were first introduced in 2014 by
Kyunghyun Cho et al. [2], which
are similar to LSTM cells except
without an output gate. As such
it requires fewer trainable
parameters than an LSTM (9).

[2] Cho, Kyunghyun; van Merrienboer, Bart; Gulcehre,
Caglar; Bahdanau, Dzmitry; Bougares, Fethi; Schwenk,
Holger; Bengio, Yoshua (2014). Learning Phrase
Representations using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv:1406.1078

x

input

*

x * zw

*

x * rw

*

x * hw

h_prev

previous output

*

h * zu

*

h * ru

*

hu * r * h_prev

*

z * h_prev

z_bias

+

z_sum

zwzu

σ

z

*

-z

r_bias

+

r_sum

rw ru

σ

r

h_bias

+

h_sum

hw

hu

tanh

h_tanh

*

(1 - z) * h_tanh

+

h (output)

-1

+

(1 - z)

1

z = σ(zw*x + zu*h_prev * z_bias)
r = σ(rw*x + lu*h_prev * r_bias)

h = z*h_prev + (1-z)*tanh(hw*x + hu*r*h_prev * h_bias)

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Memory Cell Structures - MGU

Minimal gated units
(MGUs) were proposed
by Zhou et al. in 2016 [3].
It is another example of
an effective recurrent cell
with a low number of
trainable parameters (6).

[3] Gou-Bing Zhou,Jianxin Wu, Chen-Lin
Zhang and Zhi-Hua Zhou. Minimal gated
unit for recurrent neural networks.
International Journal of Automation and
Computing 13.3 (2016): 226-234.
APA

x

input

*

x * fw

*

x * hw

h_prev

previous output

*

h * fu

*

hu * f * h_prev

*

f * h_prev

f_bias

+

f_sum

fw fu

σ

f

*

-f

h_bias

+

h_sum

hw

hu

tanh

h_tanh

*

(1 - f) * h_tanh

-1

+

(1 - f)

1

+

outf = sigmoid(fw*x + fu*h_prev * f_bias)
h = tanh(hw*x + f*hu*h_prev * h_bias)

out = (1-f)*h_prev + f*h

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Memory Cell Structures - UGRNN

Update gate recurrent
neural networks
(UGRNNs) were
introduced in 2016 by
Collins et al. [4]

UGRNNs are another
simple model with only 6
trainable parameters.

[4] Collins, Jasmine, Jascha Sohl-Dickstein,
and David Sussillo. Capacity and trainability
in recurrent neural networks. arXiv preprint
arXiv:1611.09913 (2016).

x

input

*

x * cw

*

x * gw

h_prev

previous output

*

h * ch

*

h * gh

*

g * h_prev

c_bias

+

c_sum

cw ch

tanh

c

*

(1 - g) * c

g_bias

+

g_sum

gw gh

σ

g

*

-g

-1

+

(1 - g)

1

+

h (output)c = tanh(cw*x + ch*h_prev * c_bias)
g = σ(gw*x + gh*h_prev * g_bias)

h = g*h_prev + (1-g)*c

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Memory Cell Structures - Delta-RNN

Delta-RNN cells were
first developed by
Ororbia et al. in 2017 [5],
and have shown to have
comparable performance
to other memory cells
with fewer trainable
parameters (6).

[5] Ororbia II, Alexander G., Tomas Mikolov,
and David Reitter. Learning simpler
language models with the differential state
framework. Neural computation 29.12
(2017): 3327-3352.

z_prev

previous output

*

d1

*

z_2

input

d2

*

z_hat_1

*

z_hat_3

+

input_r_bias

v

*

z_hat_2

alpha

+

z_hat_sum

beta 1

beta 2

tanh

z_cap

z_hat_bias

*

z_1

σ

r

r_bias

*

-r

-1

+

(1 - r)

1

+

z_sum

tanh

z

d1 = v*prev_z
d2 = input

z_hat_1 = alpha*d1*d2
z_hat_2 = beta1*d1
z_hat_3 = beta2*d2

z_hat_sum = z_hat_1 + z_hat_2 + z_hat_3 + z_hat_bias
z_cap = tanh(z_hat_sum)

r = σ(d2 + r_bias)
z_1 = (1-r)*z_cap

z_2 = r*prev_z
z = tanh(z_1 + z_2)

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

EXAMM: Evolutionary
eXploration of Augmenting

Memory Models

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

EXAMM
• Neuro-Evolution algorithm inspired by Neuro-Evolution of Augmenting Topologies

(NEAT) [6].

• Advancement of the earlier Evolutionary Exploration of Augmenting LSTM
Topologies (EXALT) [7]:

• Progressively grows RNNs: nodes can be simple neurons or LSTMs.

• Parallel in nature.

• Node-level mutations not present in NEAT.

• Uses Lamarckian/Epigenetic weight initialization - child RNNs utilize weights

from their parent(s).

• Evolutionary Exploration of Augmenting Memory Models (EXAMM)

• Based on EXALT, except with a library of memory cells. Nodes can be simple,

LSTM, GRU, UGRNN, MGU, or Delta-RNNs.

• Island-based Parallelism.

• Mutations have further refinements from EXALT.

[6] Kenneth Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation: 10, 2. (2002), 99–127.

[7] AbdElRahman ElSaid, Steven Benson, Shuchita Patwardhan, David Stadem, and Travis Desell. Evolving
Recurrent Neural Networks for Time Series Data Prediction of Coal Plant Parameters. The 22nd
International Conference on the Applications of Evolutionary Computation (EvoStar: EvoApps 2019).

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Edge and Node Mutations

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Edge Mutations: Split Edge

• EXAMM always starts with a minimal feed forward network (top
left) with input nodes for each input parameter fully connected
to output nodes for each output parameter (no hidden nodes).

• The edge between Input 1 and Output 1 is selected to be split.
A new node with innovation number (IN) 1 is created.

Input 1

Input 2

Input 3

Output
1

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Split Edge

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Edge Mutations: Add Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Add Edge

• Input 3 and Node IN 1 are selected to have an edge
between them added.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Edge Mutations: Enable Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Enable Edge
Input 1

Input 2

Input 3

Output
1

Node
IN 1

• The edge between Input 3 and Output 1 is enabled.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Edge Mutations: Add Recurrent Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Add Recurrent
Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

• A recurrent edge is added between Output 1 and Node IN
1.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Edge Mutations: Disable Edge

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Disable Edge
Input 1

Input 2

Input 3

Output
1

Node
IN 1

• The edge between Input 3 and Output 1 is disabled.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Node Mutations: Add Node

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Add Node
Input 1

Input 2

Input 3

Output
1

Node
IN 1

Node
IN 2

Node
IN 2

• A node with IN 2 is selected to be added at a depth between the inputs & Node
IN 1. Edges are randomly added to Input 2 and 3, and Node IN 1 and Output 1.

• The number of edges added is determined by calculating the mean and variance
of the number of input and output edges for all other nodes in the network, and
selecting randomly via a normal distribution with those means/variances.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Node Mutations: Split Node

Input 1

Input 2

Input 3

Output
1

Split Node

Node
IN 2

Input 1

Input 2

Input 3

Output
1

Node
IN 1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

• Node IN 1 is selected to be split. It is disabled with its
input/output edges. It is split into Nodes IN 3 and 4,
which get half the inputs. Both have an output edge to
Output 1 since there was only one output from Node IN 1.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Node Mutations: Merge Node

Input 1

Input 2

Input 3

Output
1

Merge Node

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Input 1

Input 2

Input 3

Output
1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

• Node IN 2 and 3 are selected for a merger (input/output
edges are disabled). Node IN 5 is created with edges
between all their inputs/outputs.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Node Mutations: Enable Node

Input 1

Input 2

Input 3

Output
1

Enable Node

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

Input 1

Input 2

Input 3

Output
1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

• Node IN 1 is selected to be enabled, along with all its
input and output edges.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Node Mutations: Disable Node

Input 1

Input 2

Input 3

Output
1

Disable Node

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

Input 1

Input 2

Input 3

Output
1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

• Node IN 5 is selected to be disabled, along with all its
input and output edges.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Clone

Input 1

Input 2

Input 3

Output
1

Clone

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

• Clone makes no modifications at all to the parent,
allowing it to continue with the back propagation process.

Input 1

Input 2

Input 3

Output
1

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Node
IN 5

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Crossover

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Crossover

Input 1

Input 2

Input 3

Output
1

Crossover

Node
IN 2

Node
IN 3

Node
IN 4

Node
IN 1

Input 1

Input 2

Input 3

Output
1

Node
IN 3

Node
IN 1

Worse
Parent

Better
Parent

Input 1

Input 2

Input 3

Output
1

Node
IN 3

Node
IN 4

Node
IN 1

• Crossover creates a child RNN using all reachable
nodes and edges from two parents. A node or edge is
reachable if there is a path of enabled nodes and
edges from an input node to it as well as a path of
enabled nodes and edges from it to an output node,
i.e., a node or edge is reachable if it actually affects
the RNN.

• Crossover can either be intra-island or inter-island.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Crossover: Lamarckian Weight Initialization

• Initial RNN weights generated uniformly at random
(between -0.5 and 0.5).

• New components (nodes/edges) are generated a normal
distribution based on the average, standard deviation,
and variance of the parent(s) weights.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Crossover: Lamarckian Weight Initialization

• In crossover where a node/edge exists in both parents we
recombine the weights. The child weights, wc, are
generated by recombining the parents’ weights:

wc = r(wp2 - wp1) + wp1

• Where r is a random number -0.5 <= r <= 1.5, where wp1
is the weight from the more fit parent, and wp2 is the
weight from the less fit parent. We can change r's bounds
to prefer weights near one parent over the other.

wp2

wp1

weight range

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Distributed Neuro-Evolution

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Synchronous/Parallel EAs

• Traditional EAs generate an entire population at a time, evaluate the
fitness of every individual and then generate the next population.

• This has problems in that if the population size is not evenly
divisible by the number of processors available there is wasted
computation. Also, the population size can't be less than the
number of processors.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

processor 1

processor 2

processor 3

fitness evaluation fitness evaluation fitness evaluation

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Synchronous/Parallel EAs

• Things are even more challenging if the fitness evaluation
times of the individuals are different or even worse
nondeterministic. Lots of waiting and unused cycles.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

processor 1

processor 2

processor 3

fitness evaluation fitness evaluation fitness evaluation

5 sec
20 sec

3 sec

10 sec
15 sec

14 sec

20 sec

5 sec
2 sec

3 sec

18 sec
4 sec

11 sec

1.5 sec

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Master Process

Asynchronous EAs

• The Master process keeps a "steady state" populuation.

• Workers independently request work (master generates new RNNs

to train), calculate fitness and report results.

• No worker waits on another worker - naturally load balanced.

Workers can even request a queue of work to reduce latency.

• Number of worker processes is independent of population size.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Worker Process 1
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

Worker Process 2
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

Worker Process N
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

...

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Master Process

Asynchronous EAs

• Asynchronous EAs can scale to millions of processors, whereas
synchronous EAs are very limited [1].

[1] Travis Desell, David P. Anderson, Malik Magdon-Ismail, Heidi Newberg, Boleslaw
Szymanski and Carlos A. Varela. An Analysis of Massively Distributed Evolutionary
Algorithms. In the Proceedings of the 2010 IEEE Congress on Evolutionary Computation
(IEEE CEC 2010). pages 1-8. Barcelona, Spain. July 2010.

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual 6

Individual 7

Population 1

Worker Process 1
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

Worker Process 2
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

Worker Process N
Worker requests an individual.

Worker calculates fitness function (in our case,
trains the RNN with backprop).

Worker reports results and requests more work.

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

worker requests an individual

masters generates an individual to evaluate

worker reports updated individual

...

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Islands

• EXAMM uses islands, which have been shown to potentially provide
superlinear speedup on some EAs [2].

• The master process keeps separate "island" populations and performs
crossover within islands (intra-island crossover) or crossover between
islands (inter-island crossover).

[2] Enrique Alba and Marco Tomassini. 2002. Parallelism and evolutionary algorithms. IEEE
Transactions on Evolutionary Computation: 6, 5 (2002), 443–462.

Master Process

Individual 1

Individual 2

Individual 3

Island 1

Individual 1

Individual 2

Individual 3

Island 1

Individual 1

Individual 2

Individual 3

Island 1

Individual 1

Individual 2

Individual 3

Island 1

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Islands

• When workers request individuals, the master process generates them
from an island in a round-robin manner.

• Individuals are inserted into an island if they are better than the worst
individual in that island (and the worst is removed) - Individual islands
evolve/speciate faster.

• Periodically crossover happens between islands for most fit
individuals, sharing information (a random individual on an island is
crossed over with the best individual from another island).

Master Process

Individual 1

Individual 2

Individual 3

Island 1

Individual 1

Individual 2

Individual 3

Island 1

Individual 1

Individual 2

Individual 3

Island 1

Individual 1

Individual 2

Individual 3

Island 1

intra-island
crossover

inter-island
crossover

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Data Sets

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Data Sets

• Two large-scale, real-world data from Aviation and Power
industries used to evaluate EXAMM.

• 10 flights from the National General Aviation Flight
Information Database (NGAFID):

• 1-3 hours long

• per second readings

• 26 parameters

• 12 coal plant burners from a DOE award with Microbeam
Technologies, Inc.

• 10 days long

• per minute readings

• 12 parameters

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Data Sets: Coal Plant

• Parameters are non-seasonal and correlated/dependent.

• Predicting Fuel Flow and Flame Intensity

• Data made public on github repo. Pre-normalized and

anonymized.

1. Conditioner Inlet Temp

2. Conditioner Outlet Temp

3. Coal Feeder Rate

4. Primary Air Flow

5. Primary Air Split

6. System Secondary Air

Flow Total

7. Secondary Air Flow

8. Secondary Air Split

9. Tertiary Air Split

10. Total Combined Air Flow

11. Supplementary Fuel

Flow
12. Main Flame Intensity

12 data files, 12 parameters:

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Data Sets: NGAFID

• Parameters are non-seasonal and correlated/dependent.

• Predicting RPM and Pitch

• Data made public on github repo. Non-normalized and

anonymized.

1. Altitude Above Ground Level (AltAGL)

2. Engine 1 Cylinder Head Temperature 1 (E1

CHT1)

3. Engine 1 Cylinder Head Temperature 2 (E1

CHT2)

4. Engine 1 Cylinder Head Temperature 3 (E1

CHT3)

5. Engine 1 Cylinder Head Temperature 4 (E1

CHT4)

6. Engine 1 Exhaust Gas Temperature 1 (E1 EGT1)

7. Engine 1 Exhaust Gas Temperature 2 (E1 EGT2)

8. Engine 1 Exhaust Gas Temperature 3 (E1 EGT3)

9. Engine 1 Exhaust Gas Temperature 4 (E1 EGT4)

10. Engine 1 Oil Pressure (E1 OilP)

11. Engine 1 Oil Temperature (E1 OilT)

12. Engine 1 Rotations Per minute (E1 RPM)
13. Fuel Quantity Left (FQtyL)

14. Fuel Quantity Right (FQtyR)

15. GndSpd - Ground Speed (GndSpd)

16. Indicated Air Speed (IAS)

17. Lateral Acceleration (LatAc)

18. Normal Acceleration (NormAc)

19. Outside Air Temperature (OAT)

20. Pitch
21. Roll

22. True Airspeed (TAS)

23. Voltage 1 (volt1)

24. Voltage 2 (volt2)

25. Vertical Speed (VSpd)

26. Vertical Speed Gs (VSpdG)

10 data files, 26 parameters:

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Results

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• RIT Research Computing systems used to gather results.

• Compute nodes heterogeneous:

• 10 core 2.3 GHz Intel Xeon CPU E5-2650 v3

• 32 core 2.6 GHz AMD Opteron Processor 6282 SE

• 48 core 2.5 GHz AMD Opteron Processor 6180 SEs

• All compute nodes ran RedHat Enterprise Linux 6.10.

• EXAMM runs utilized different compute notes as
determined by RC's SLURM scheduler.

Computing Environment

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• EXAMM run with individual memory cells, individual memory cells +
simple neurons, and with all memory cells and simple neurons.

• Memory cell types:

• Delta-RNN

• GRU

• LSTM

• MGU

• UGRNN

• K-fold cross validation (2 files per fold), 10 repeats per fold, 2 output
parameters (RPM, Pitch) on NGAFID data - 1100 runs.

• K-fold cross validation (2 files per fold), 10 repeats per fold, 2 output
parameters (Flame Intensity, Fuel Flow) on Coal Data - 1320 runs.

• EXALT trained 2000 RNNs for 10 epochs each, distributed across 20
processes.

• 4,840,000 RNNs trained in total in ~24,200 CPU hours

EXAMM Experimental Setup

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Rankings (deviations from mean) for flame intensity
predictions. Lower values (higher on the chart) is better.

Flame IntensityGECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Rankings (deviations from mean) for flame intensity
predictions. Lower values (higher on the chart) is better.

Fuel Flow

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Rankings (deviations from mean) for flame intensity
predictions. Lower values (higher on the chart) is better.

RPM

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Rankings (deviations from mean) for flame intensity
predictions. Lower values (higher on the chart) is better.

Pitch

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Combined rankings from all 4 prediction parameters.

Overall Rankings

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Flame Intensity
Best Case Avg. Case Worst Case
�-RNN -0.92312 �-RNN+simple -1.7775 all -1.5404

�-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066
all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026

UGRNN+simple -0.71451 �-RNN -0.026901 MGU -0.59787
LSTM -0.46836 GRU 0.18143 GRU -0.33703

LSTM+simple -0.42565 UGRNN 0.19272 �-RNN 0.035348
GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246

MGU+simple 0.31264 all 0.42371 delta+simple 0.69439
UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569

MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318
GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel �ow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 �-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 �-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
�-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
�-RNN+simple -0.22068 all 0.22163 GRU 0.087564
LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 �-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 �-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
�-RNN -1.0347 �-RNN -1.0081 �-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
�-RNN+simple -0.29348 �-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 �-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 �-RNN+simple -0.56665 �-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 �-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

�-RNN 1.0682 UGRNN 0.70761 all 0.39991
�-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 �-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 �-RNN+simple -0.47566
�-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 �-RNN -0.013211 LSTM 0.12847

�-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 �-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

Table 4: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.

improved the population in the past (with caveats described in the
next point) – this stands as future work which can make EXAMM
an even stronger option for generating RNNs, especially in the
average and worse cases where they did not fare as well.

Larger networks tended to perform better, yet memory cell count
correlation to MSE was not a great indicator of which cells performed
the best: This last point raises some signi�cant challenges for de-
veloping neuro-evolution algorithms. When looking at Table 3 and
examining the memory cells types most correlated to improved per-
formance against the memory cell types most frequently selected
by EXAMM, meant that EXAMM was not selecting cell types that
would produce the best performing RNNs. This may due to the fact
that, in some cases, an RNN with a small number of well trained
memory cells was su�cient to yield good predictions, and adding
more cells to the network only served to confuse the predictions.

The implications of this are two fold: 1), running a neuro-evolution
strategy allowing all memory cell types and then utilizing counts
or correlations to select a single memory cell type for future runs
may not produce the best results, and 2), dynamically tuning which
memory cells are selected by a neuro-evolution strategy is more
challenging since the process may not select the best cell types
(e.g., when the network already has enough memory cells) – so
this would at least need to be coupled with another strategy to
determine when the network is “big enough”.

5 CONCLUSIONS AND FUTUREWORK
This work introduced a new neuro-evolution algorithm, Evolution-
ary eXploration of Augmenting Memory Models (EXAMM), for
evolving recurrent neural architectures by directly incorporating
powerful memory cells such as the �-RNN, MGU, GRU, LSTM and
UGRNN units into the evolutionary process. EXAMM was eval-
uated on the task of predicting 4 di�erent parameters from two
large, real world time-series datasets. By using repeated k-fold cross
validation and high performance computing, enough RNNs were
evolved to be rigorously analyzed – a methodology the authors
think should be highlighted as novel. Instead of utilizing them to
outperform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing deeper
insights into what neural structures perform best on certain tasks.

Key �ndings from this work show that a neuro-evolution strat-
egy that selects from a wide number of memory cell structures
can yield performant architectures. However, it does so at the ex-
pense of reliability in the average and worst cases. Furthermore,
a simple modi�cation to the evolutionary process, i.e., allowing
simple neurons, can have dramatic e�ects on network performance.
In general, while this largely bene�ts most memory cells, outlier
cases showed wide swings from worst to best and best to worst
performance. The authors hope that these results will guide future
memory cell development, as the addition of feedforward nodes
dramatically improved MGU performance, but also decreased GRU
performance. Understanding cases like that of the GRU could yield
improvements in cell design. Results showed that cell selection does
not necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not necessarily
require a large network. These results should serve as cautionary
information for future development of neuro-evolution algorithms.

This paper opens up many avenues of future work. This includes
extending EXAMM’s search process to allow cellular elements of
the underlying neural model to be evolved (as in Rawal and Miiku-
lainen [27]); evolving over a large set of post-activation functions;
allowing for stochastic operations, e.g., Bernoulli sampling; and
incorporating operators such as convolution (to handle video se-
quences/time series) or its simple approximation, the perturbative
operator [18]. Additional future work will involve various hyper-
parameter optimization strategies to dynamically determine RNN
training metaparameters as well as what probabilities EXAMM uses
to choose memory cell structures and what probabilities it uses for
the mutation and recombination operators. Lastly, implementing
even larger scale mutation operations, such as multi-node/layer
mutations could potentially speed up EXAMM’s neuro-evolution
process even further.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• No memory structure was the best.

• Delta-RNN, LSTM, and MGU tended better than GRU,
and UGRNN (except in fuel flow, best avg case for pitch).

• Delta-RNNs compared competitively with LSTMs while
requiring less weights (i.e., a less complex structure).

EXAMM Results

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Allowing all memory cells has risks and benefits.

• All cell types + simple neurons found the best networks in the case of
fuel flow, 2nd best in the case of pitch, and 3rd best in the case of flame
intensity.

• Using all memory cell types generally performed better than the mean on
the best case, however performed worse in the average and worst
cases.

• Allowing EXAMM to select from all possible memory cells was not
entirely a bad strategy. In many cases it found the best but on average it
did not do as well (most likely due to it having a much larger search
space - tweaking hyperparameters for more exploration could improve
this).

• Open Question: Can we further improve results by dynamically adapting
the rates at which memory cells are generated?

EXAMM Results

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Adding simple neurons generally helped - with some notable
exceptions.

• All memory cell types improved with them except GRU.

• Simple neurons + MGUs resulted in dramatic improvement, bringing them

from some of the worst rankings to some of the best rankings (e.g., in the
overall rankings for best found networks, MGU cells alone performed the
worst while MGU and feedforward performed the best).

• Other cell types (LSTM and Delta-RNN) showed less of an improvement.

• This finding may highlight that the MGU cells could stand to benefit from
further development.

• Even the rather simple change of allowing simple neurons can result in
significant changes in RNN predictive ability. Selection of node and cell
types for neuro-evolution should be done carefully.

• Open question: Why do GRU cells performed worse with simple neurons
added? Why do MGU cells perform so much better?

EXAMM Results

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Larger networks tended to perform better, yet memory cell count correlation to
MSE was not a great indicator of which cells performed the best.

• Challenges for developing neuro-evolution algorithms:

• Compared the memory cells types most correlated to improved performance

against the memory cell types most frequently selected by EXAMM.

• EXAMM was not selecting cell types that would produce the best performing RNNs,

rather cell types that provided an improvement to the population (most did) -- this
can be a non-optimal choice.

• An RNN with a small number of well trained memory cells was sufficient to yield
good predictions, and adding more cells to the network only served to confuse the
predictions.

• Open problems:
• Running a neuro-evolution strategy allowing all memory cell types and then utilizing

counts or correlations to select a single memory cell type for future runs may not
produce the best results.

• Dynamically tuning which memory cells are selected by a neuro-evolution strategy is
more challenging since the process may not select the best cell types (e.g., when
the network already has enough memory cells) – so this would at least need to be
coupled with another strategy to determine when the network is “big enough”.

EXAMM Results

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Evolving memory cell structures.

• Allowing multiple activation functions (tanh mostly used in

this work).

• Hyperparameter optimization for RNN training.

• Layer-level mutations to speed evolution

• Self-tuning EXAMM.

• EXAMM for transfer learning: take a pre-evolved/pre-

trained network and evolve it to new problems.

• Use our findings to examine and improve existing RNN
memory cell structures.

Future Work

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Discussion/Questions?

https://github.com/travisdesell/exact

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Example Network
Genome Fitness: 2.1461% MAE

input 1
depth 0

Conditioner_Inlet_Temp

input 2
depth 0

Conditioner_Outlet_Temp

output 13
depth 1

Main_Flm_Int

elman node #35
depth 0.289746

elman node #1844
depth 0.480222

jordan node #291
depth 0.5

UGRNN node #1461
depth 0.541938

input 3
depth 0

Coal_Feeder_Rate

delta node #1112
depth 0.156731

GRU node #1103
depth 0.411999

jordan node #178
depth 0.414791

MGU node #724
depth 0.5

MGU node #287
depth 0.813457

GRU node #119
depth 0.846991

input 4
depth 0

Primary_Air_Flow

jordan node #734
depth 0.0608112

jordan node #144
depth 0.5

MGU node #723
depth 0.5

jordan node #974
depth 0.5

GRU node #839
depth 0.875261

jordan node #171
depth 0.999737

input 5
depth 0

Primary_Air_Split

feed_forward node #604
depth 0.00601095

jordan node #975
depth 0.5

MGU node #269
depth 0.546723

elman node #156
depth 0.567231

LSTM node #120
depth 0.818413

delta node #1370
depth 0.887645

input 6
depth 0

System_Secondary_Air_Flow_Total

delta node #769
depth 0.427598

jordan node #143
depth 0.5

jordan node #292
depth 0.5

UGRNN node #522
depth 0.5

UGRNN node #523
depth 0.5

jordan node #772
depth 0.534986

input 7
depth 0

Secondary_Air_Flow

UGRNN node #722
depth 0.188877

LSTM node #16
depth 0.310609

LSTM node #373
depth 0.5

input 8
depth 0

Secondary_Air_Split

LSTM node #374
depth 0.409206

input 9
depth 0

Tertiary_Air_Split

MGU node #230
depth 0.5

input 10
depth 0

Total_Comb_Air_Flow

input 11
depth 0

Supp_Oil_Flow

input 12
depth 0

Main_Flm_Int

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Recent results comparing NEAT to EXAMM/EXALT on
flame intensity data set.

EXAMM vs. NEAT vs. ACO

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Min/avg/max mean squared error while training for each
fold.

1 Layer Feed Forward

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

2 Layer Feed Forward

• Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

1 Layer LSTM

• Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

2 Layer LSTM

• Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Jordan

• Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

Elman

• Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

EXALT

• Min/avg/max mean squared error while training for each
fold.

The 2019 Genetic and Evolutionary Computation Conference
Prague, Czech Republic
 July 13th-17th, 2019

• Significantly more reliable than the fixed architectures.

• Wallclock time was faster in terms of training time, 2-10x faster than the

fixed RNNs.

• EXALT's RNNs were smaller (see above).

• However, some of the fixed RNNs did find slightly better performance in
the best case across all the repeats.

AbdElRahman ElSaid, Steven Benson, Shuchita Patwardhan, David Stadem and Travis Desell.
2019. Evolving Recurrent Neural Networks for Time Series Data Prediction of Coal Plant
Parameters. In The 22nd International Conference on the Applications of Evolutionary
Computation. Leipzig, Germany. April 22-24, 2019. To appear.

EXALT Results
Nodes Edges Rec. Edges Weights

One Layer FF 25 156 0 181
Two Layer FF 37 300 0 337
Jordan RNN 25 156 12 193
Elman RNN 25 156 144 325
One Layer LSTM 25 156 0 311
Two Layer LSTM 37 300 0 587
EXALT Best Avg. 14.7 26.2 14.6 81.5

Table 2. Number of nodes, edges, recurrent edges and trainable connections (weights)
in each evaluated network type, and the average values for the best evolved RNNs by
EXALT.

Genome Fitness: 2.99765% MAE
input 2
depth 0

Burner-Conditioner_Inlet_Temp

input 12
depth 0

Burner-Conditioner_Outlet_Temp

output 13
depth 1

Burner-Main_Flm_Int

node 31
depth 0.737654

node 458
depth 0.784587

input 10
depth 0

Burner-Primary_Air_Flow

node 14
depth 0.5

input 9
depth 0

Burner-Primary_Air_Split

input 8
depth 0

Burner-System_Secondary_Air_Flow_Total

input 6
depth 0

Burner-Secondary_Air_Split

input 5
depth 0

Burner-Tertiary_Air_Split

node 16
depth 0.5

input 4
depth 0

Burner-Total_Comb_Air_Flow

input 3
depth 0

Burner-Supp_Oil_Flow

input 1
depth 0

Burner-Main_Flm_Int

Genome Fitness: 2.95717% MAE
input 12
depth 0

Burner-Conditioner_Inlet_Temp

input 1
depth 0

Burner-Conditioner_Outlet_Temp

output 13
depth 1

Burner-Main_Flm_Int

node 31
depth 0.567021

input 11
depth 0

Burner-Coal_Feeder_Rate

node 49
depth 0.656638

input 10
depth 0

Burner-Primary_Air_Flow

node 21
depth 0.303324

node 191
depth 0.668649

input 9
depth 0

Burner-Primary_Air_Split

node 25
depth 0.98803

input 8
depth 0

Burner-System_Secondary_Air_Flow_Total

input 7
depth 0

Burner-Secondary_Air_Flow

input 6
depth 0

Burner-Secondary_Air_Split

input 5
depth 0

Burner-Tertiary_Air_Split

input 3
depth 0

Burner-Supp_Oil_Flow

input 2
depth 0

Burner-Main_Flm_Int

node 55
depth 0.151662

Fig. 3. Two examples of the best RNNs evolved by EXALT. Orange nodes are LSTM
neurons, while black ndoes are regular neurons. Dotted lines represet recurrent connec-
tions, while solid lines represent feed forward connections. Colors of the lines represent
the magnitude of the weights weights (-1.0 is the most blue to 1.0 being the most red).

